1 Introduction

This study evaluates the predictive utility of GeRS calculated using several strategies. The predictive utility of models containing polygenic scores and GeRS is also investigated.



2 Aims

  • Evaluate the predictive utility of GeRS based on a single eQTL data source.
  • Evaluate models combining GeRS derived eQTL data from multiple tissues.
  • Determine whether GeRS can improve prediction when in combination with polygenic scores.



3 Methods

3.1 Samples

  • UK Biobank
  • TEDS

3.2 Outcomes

  • UK Biobank
    • Depression (binary)
    • Intelligence (continuous)
    • Body mass index (BMI - continuous)
    • Height (continuous)
    • Coronary Artery Disease (CAD - Binary)
    • Type II Diabetes (T2D - Binary)
    • Inflammatory Bowel Disorder (IBD - Binary)
    • Rheumatoid arthritis (RheuArth - Binary)
  • TEDS
    • ADHD traits (continuous)
    • Height (continuous)
    • Body mass index (BMI - continuous)
    • GCSE scores (continuous)

Note. Multiple Slerosis in UK Biobank was not included due to insufficent SNP data in the corresponding GWAS for TWAS.

3.3 Genotypic data

Both target sample underwent stringent quality control prior to imputation using the HRC-reference. After imputation, genotypes were converted to PLINK hard-calls, and only HapMap3 SNPs were retained. Eureopean individuals within the target samples were identified and retained if they were within the 3SD of the 1KG European mean of the first 100 principal components.

3.4 GWAS summary statistics

For each target phenotype, the largest independent phenotype-matched GWAS was selected for calculating polygenic scores. More information can be found in the table below.

Preparing GWAS sumstats table for UK Biobank phenotypes

source('/users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Phenotype_prep.config')

library(data.table)

pheno<-fread('/users/k1806347/brc_scratch/Data/GWAS_sumstats/QC_sumstats_list_031218.csv')

ukb_pheno=c('Depression','Intelligence','BMI','Height','T2D','CAD','IBD','MultiScler','RheuArth')
ukb_gwas=c('DEPR06','COLL01','BODY03','HEIG03','DIAB05','COAD01','CROH01','SCLE02','RHEU01')
ukb_prev=c(0.15,NA,NA,NA,0.05,0.03,0.013,0.00164,0.005)
ukb_dat<-data.frame(pheno=ukb_pheno,gwas=ukb_gwas,prev=ukb_prev)

pheno_ukb<-pheno[(pheno$Code %in% ukb_gwas),]
pheno_ukb<-pheno_ukb[,c('Code','trait','year','PMID','Ncases','Ncontrols','sample_size_discovery','h2 observed','h2 se','lambda GC','intercept','intercept se')]
names(pheno_ukb)<-c('Code','trait','year','PMID','Ncases','Ncontrols','sample_size_discovery','h2_obs','h2_se','lambda','intercept','intercept_se')

pheno_ukb$pop_prev<-ukb_dat$prev[match(pheno_ukb$Code, ukb_dat$gwas)]
pheno_ukb$Target_Phenotype<-ukb_dat$pheno[match(pheno_ukb$Code, ukb_dat$gwas)]
pheno_ukb$Ncases<-as.numeric(gsub(',','',pheno_ukb$Ncases))
pheno_ukb$Ncontrols<-as.numeric(gsub(',','',pheno_ukb$Ncontrols))
pheno_ukb$samp_prev<-pheno_ukb$Ncases/(pheno_ukb$Ncases+pheno_ukb$Ncontrols)

h2l_R2 <- function(k, r2, p) {
  # K baseline disease risk
  # r2 from a linear regression model attributable to genomic profile risk score
  # P proportion of sample that are cases
  # calculates proportion of variance explained on the liability scale
  #from ABC at http://www.complextraitgenomics.com/software/
  #Lee SH, Goddard ME, Wray NR, Visscher PM. (2012) A better coefficient of determination for genetic profile analysis. Genet Epidemiol. 2012 Apr;36(3):214-24.
  x= qnorm(1-k)
  z= dnorm(x)
  i=z/k
  C= k*(1-k)*k*(1-k)/(z^2*p*(1-p))
  theta= i*((p-k)/(1-k))*(i*((p-k)/(1-k))-x)
  h2l_R2 = C*r2 / (1 + C*theta*r2)
}

se_h2l_R2 <- function(k,h2,se, p) {
  # K baseline disease risk
  # r2 from a linear regression model attributable to genomic profile risk score
  # P proportion of sample that are cases
  # calculates proportion of variance explained on the liability scale
  #from ABC at http://www.complextraitgenomics.com/software/
  #Lee SH, Goddard ME, Wray NR, Visscher PM. (2012) A better coefficient of determination for genetic profile analysis. Genet Epidemiol. 2012 Apr;36(3):214-24.

  #SE on the liability (From a Taylor series expansion)
  #var(h2l_r2) = [d(h2l_r2)/d(R2v)]^2*var(R2v) with d being calculus differentiation
  x= qnorm(1-k)
  z= dnorm(x)
  i=z/k
  C= k*(1-k)*k*(1-k)/(z^2*p*(1-p))
  theta= i*((p-k)/(1-k))*(i*((p-k)/(1-k))-x)
  se_h2l_R2 = C*(1-h2*theta)*se
}

pheno_ukb$h2_obs<-as.numeric(pheno_ukb$h2_obs)
pheno_ukb$h2_se<-as.numeric(pheno_ukb$h2_se)

pheno_ukb$h2_liab<-round(h2l_R2(k=pheno_ukb$pop_prev, r2=pheno_ukb$h2_obs, p=pheno_ukb$samp_prev),3)
pheno_ukb$h2_liab_se<-round(se_h2l_R2(k=pheno_ukb$pop_prev,h2=pheno_ukb$h2_obs,se=pheno_ukb$h2_se, p=pheno_ukb$samp_prev),3)

pheno_ukb$h2_obs<-paste0(pheno_ukb$h2_obs," (", pheno_ukb$h2_se,")")
pheno_ukb$h2_se<-NULL
pheno_ukb$h2_liab[!is.na(pheno_ukb$Ncases)]<-paste0(pheno_ukb$h2_liab[!is.na(pheno_ukb$Ncases)]," (", pheno_ukb$h2_liab_se[!is.na(pheno_ukb$Ncases)],")")
pheno_ukb$h2_liab_se<-NULL
pheno_ukb$intercept<-paste0(pheno_ukb$intercept," (", pheno_ukb$intercept_se,")")
pheno_ukb$intercept_se<-NULL

pheno_ukb$trait<-c('BMI','CAD','College Completion',"Crohn's Disease",'Major Depression','T2D','Height','RheuArth','MultiScler')
pheno_ukb<-pheno_ukb[match(ukb_dat$gwas,pheno_ukb$Code),]

pheno_ukb<-pheno_ukb[,c('Target_Phenotype','Code','trait','year','PMID','Ncases','Ncontrols','sample_size_discovery','h2_obs','h2_liab','intercept','lambda')]
names(pheno_ukb)<-c('Target Phenotype','Code','GWAS Phenotype','Year','PMID','Ncase','Ncontrol','N','h2_obs','h2_liab','Intercept','Lambda')

write.csv(pheno_ukb, '/users/k1806347/brc_scratch/Data/GWAS_sumstats/UKBB_phenotype_GWAS_descrip.csv', row.names=F, quote=F)

Show GWAS for UK Biobank phenotypes

GWAS used for each UK Biobank phenotype
Target Phenotype Code GWAS Phenotype Year PMID Ncase Ncontrol N h2-obs (SE) h2-liab (SE) Intercept Lambda
Major Depression DEPR06 major depressive disorder 2018 29700475 116404 314990 431394 0.0551 (0.0023) 0.085 (0.004) 1.0169 (0.0088) 1.3894
Intelligence COLL01 college completion 2013 23722424 NA NA 95427 0.1048 (0.0075) NA 1.0214 (0.0086) 1.1940
BMI BODY04 BMI 2015 25673413 NA NA 322154 0.1297 (0.0056) NA 0.6729 (0.0076) 1.0772
Height HEIG03 height 2014 25282103 NA NA 253288 0.312 (0.0141) NA 1.3254 (0.0185) 2.0007
T2D DIAB05 diabetes type 2 2017 28566273 26676 132532 159208 0.0781 (0.0053) 0.124 (0.008) 0.9984 (0.0083) 1.1459
CAD COAD01 coronary artery disease 2015 26343387 60801 123504 184305 0.0661 (0.0045) 0.057 (0.004) 0.8875 (0.0074) 1.0466
Crohn’s Disease CROH01 crohn disease 2015 26192919 5956 14927 20883 0.4751 (0.0538) 0.542 (0.059) 1.0316 (0.0092) 1.1396
MultiScler SCLE03 multiple sclerosis 2011 21833088 9772 17376 27148 0.0493 (0.0262) 0.021 (0.012) 1.0599 (0.0085) 1.0375
RheuArth RHEU02 rheumatoid arthritis 2014 24390342 14361 43923 58284 0.1406 (0.0176) 0.102 (0.013) 0.9511 (0.0076) 1.0466
Breast Cancer BRCA01 breast cancer 2017 29059683 122977 105974 228951 0.1326 (0.0108) 0.157 (0.013) 1.1001 (0.0125) 1.3581
Prostate Cancer PRCA01 prostate cancer 2017 29892016 79148 61106 140254 0.1635 (0.0238) 0.198 (0.029) 1.0804 (0.0153) 1.2201

Preparing GWAS sumstats table for TEDS phenotypes

source('/users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Phenotype_prep.config')

library(data.table)

pheno<-fread('/users/k1806347/brc_scratch/Data/GWAS_sumstats/QC_sumstats_list_031218.csv')

teds_pheno=c('Height21', 'BMI21', 'GCSE', 'ADHD')
teds_gwas=c('HEIG03', 'BODY11', 'EDUC03', 'ADHD04')
teds_prev=c(NA,NA,NA,0.05)
teds_dat<-data.frame(pheno=teds_pheno,gwas=teds_gwas,prev=teds_prev)

pheno_teds<-pheno[(pheno$Code %in% teds_gwas),]
pheno_teds<-pheno_teds[,c('Code','trait','year','PMID','Ncases','Ncontrols','sample_size_discovery','h2 observed','h2 se','lambda GC','intercept','intercept se')]
names(pheno_teds)<-c('Code','trait','year','PMID','Ncases','Ncontrols','sample_size_discovery','h2_obs','h2_se','lambda','intercept','intercept_se')

pheno_teds$pop_prev<-teds_dat$prev[match(pheno_teds$Code, teds_dat$gwas)]
pheno_teds$Target_Phenotype<-teds_dat$pheno[match(pheno_teds$Code, teds_dat$gwas)]
pheno_teds$Ncases<-as.numeric(gsub(',','',pheno_teds$Ncases))
pheno_teds$Ncontrols<-as.numeric(gsub(',','',pheno_teds$Ncontrols))
pheno_teds$samp_prev<-pheno_teds$Ncases/(pheno_teds$Ncases+pheno_teds$Ncontrols)

h2l_R2 <- function(k, r2, p) {
  # K baseline disease risk
  # r2 from a linear regression model attributable to genomic profile risk score
  # P proportion of sample that are cases
  # calculates proportion of variance explained on the liability scale
  #from ABC at http://www.complextraitgenomics.com/software/
  #Lee SH, Goddard ME, Wray NR, Visscher PM. (2012) A better coefficient of determination for genetic profile analysis. Genet Epidemiol. 2012 Apr;36(3):214-24.
  x= qnorm(1-k)
  z= dnorm(x)
  i=z/k
  C= k*(1-k)*k*(1-k)/(z^2*p*(1-p))
  theta= i*((p-k)/(1-k))*(i*((p-k)/(1-k))-x)
  h2l_R2 = C*r2 / (1 + C*theta*r2)
}

se_h2l_R2 <- function(k,h2,se, p) {
  # K baseline disease risk
  # r2 from a linear regression model attributable to genomic profile risk score
  # P proportion of sample that are cases
  # calculates proportion of variance explained on the liability scale
  #from ABC at http://www.complextraitgenomics.com/software/
  #Lee SH, Goddard ME, Wray NR, Visscher PM. (2012) A better coefficient of determination for genetic profile analysis. Genet Epidemiol. 2012 Apr;36(3):214-24.

  #SE on the liability (From a Taylor series expansion)
  #var(h2l_r2) = [d(h2l_r2)/d(R2v)]^2*var(R2v) with d being calculus differentiation
  x= qnorm(1-k)
  z= dnorm(x)
  i=z/k
  C= k*(1-k)*k*(1-k)/(z^2*p*(1-p))
  theta= i*((p-k)/(1-k))*(i*((p-k)/(1-k))-x)
  se_h2l_R2 = C*(1-h2*theta)*se
}

pheno_teds$h2_obs<-as.numeric(pheno_teds$h2_obs)
pheno_teds$h2_se<-as.numeric(pheno_teds$h2_se)

pheno_teds$h2_liab<-round(h2l_R2(k=pheno_teds$pop_prev, r2=pheno_teds$h2_obs, p=pheno_teds$samp_prev),3)
pheno_teds$h2_liab_se<-round(se_h2l_R2(k=pheno_teds$pop_prev,h2=pheno_teds$h2_obs,se=pheno_teds$h2_se, p=pheno_teds$samp_prev),3)

pheno_teds$h2_obs<-paste0(pheno_teds$h2_obs," (", pheno_teds$h2_se,")")
pheno_teds$h2_se<-NULL
pheno_teds$h2_liab[!is.na(pheno_teds$Ncases)]<-paste0(pheno_teds$h2_liab[!is.na(pheno_teds$Ncases)]," (", pheno_teds$h2_liab_se[!is.na(pheno_teds$Ncases)],")")
pheno_teds$h2_liab_se<-NULL
pheno_teds$intercept<-paste0(pheno_teds$intercept," (", pheno_teds$intercept_se,")")
pheno_teds$intercept_se<-NULL

pheno_teds$trait<-c("ADHD (mixed ancestry)",'BMI','Educational Attainment','Height')
pheno_teds<-pheno_teds[match(teds_dat$gwas,pheno_teds$Code),]

pheno_teds<-pheno_teds[,c('Target_Phenotype','Code','trait','year','PMID','Ncases','Ncontrols','sample_size_discovery','h2_obs','h2_liab','intercept','lambda')]
names(pheno_teds)<-c('Target Phenotype','Code','GWAS Phenotype','Year','PMID','Ncase','Ncontrol','N','h2_obs','h2_liab','Intercept','Lambda')

pheno_teds$PMID[2]<-30124842
pheno_teds$PMID[4]<-30478444

write.csv(pheno_teds, '/users/k1806347/brc_scratch/Data/GWAS_sumstats/TEDS_phenotype_GWAS_descrip.csv', row.names=F, quote=F)

Show GWAS for TEDS phenotypes

GWAS used for each TEDS phenotype
Target Phenotype Code GWAS Phenotype Year PMID Ncase Ncontrol N h2-obs (SE) h2-liab (SE) Intercept Lambda
Height HEIG03 height 2014 25282103 NA NA 253288 0.312 (0.0141) NA 1.3254 (0.0185) 2.0007
BMI BODY11 BMI 2018 30124842 NA NA 681275 0.1908 (0.0053) NA 1.1864 (0.0206) 2.7872
GCSE EDUC03 years educational attainment 2018 30038396 NA NA 766345 0.1066 (0.0026) NA 1.0301 (0.0137) 2.0940
ADHD symptoms ADHD04 ADHD 2017 30478444 20183 35191 55374 0.3635 (0.0227) 0.426 (0.026) 1.0295 (0.0096) 1.2431


3.5 TWAS

Preparing table showing SNP-weight sets used

source('/users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Phenotype_prep.config')

library(data.table)
weights<-fread(paste0(TWAS_rep, '/snp_weight_list.txt'), header=F)$V1

pos_unique<-fread('/users/k1806347/brc_scratch/Data/1KG/Phase3/Predicted_expression/Tissue_specific.pos')
pos_unique$WGT<-paste0(pos_unique$PANEL,'/',gsub('.*/','',pos_unique$WGT))

weights_info<-NULL
pos_all<-NULL
for(weights_i in weights){
  pos<-fread(paste0(FUSION_dir,'/SNP-weights/',weights_i,'/',weights_i,'.pos'))
  
  if(grepl('CMC', weights_i) == T){
    sample_i<-'CMC'
    tissue_i<-'Brain:DLPFC'
  }
  if(grepl('NTR', weights_i) == T){
    sample_i<-'NTR'
    tissue_i<-'Peripheral Blood'
  }
  if(grepl('YFS', weights_i) == T){
    sample_i<-'YFS'
    tissue_i<-'Whole Blood'
  }
  if(grepl('METSIM', weights_i) == T){
    sample_i<-'METSIM'
    tissue_i<-'Adipose'
  }
  if(grepl('CMC|NTR|YFS|METSIM', weights_i) == F){
    sample_i<-'GTEx'
    tissue_i<-gsub('_',' ',weights_i)
  }

  weights_info<-rbind(weights_info, data.frame(Set=weights_i,
                                               Sample=sample_i,
                                               Tissue=tissue_i,
                                               Type='Expression',
                                               N_indiv=pos$N[1],
                                               N_feat=dim(pos)[1],
                                               N_feat_spec=sum(pos$WGT %in% pos_unique$WGT)))
  
  pos_all<-rbind(pos_all, pos)
}

dim(pos_all) # 260598
length(unique(pos_all$ID)) # 26434

weights_info$Type<-as.character(weights_info$Type)
weights_info$Type[weights_info$Set=='CMC.BRAIN.RNASEQ_SPLICING']<-'Splicing'

write.csv(weights_info, '/users/k1806347/brc_scratch/Analyses/GeRS_comparison/snp_weights_table.csv', row.names=F, quote=F)

Show SNP-weight characteristics

SNP-weight set characteristics
Set Sample Tissue Type N_indiv N_feat N_feat_spec
Adipose_Subcutaneous GTEx Adipose Subcutaneous Expression 385 8192 3917
Adipose_Visceral_Omentum GTEx Adipose Visceral Omentum Expression 313 6173 2693
Adrenal_Gland GTEx Adrenal Gland Expression 175 4520 1988
Artery_Aorta GTEx Artery Aorta Expression 267 6462 2949
Artery_Coronary GTEx Artery Coronary Expression 152 3247 1310
Artery_Tibial GTEx Artery Tibial Expression 388 8223 4041
Brain_Amygdala GTEx Brain Amygdala Expression 88 1836 794
Brain_Anterior_cingulate_cortex_BA24 GTEx Brain Anterior cingulate cortex BA24 Expression 109 2709 1286
Brain_Caudate_basal_ganglia GTEx Brain Caudate basal ganglia Expression 144 3660 1778
Brain_Cerebellar_Hemisphere GTEx Brain Cerebellar Hemisphere Expression 125 4407 2238
Brain_Cerebellum GTEx Brain Cerebellum Expression 154 5854 2991
Brain_Cortex GTEx Brain Cortex Expression 136 4011 1932
Brain_Frontal_Cortex_BA9 GTEx Brain Frontal Cortex BA9 Expression 118 3143 1531
Brain_Hippocampus GTEx Brain Hippocampus Expression 111 2294 1051
Brain_Hypothalamus GTEx Brain Hypothalamus Expression 108 2314 1071
Brain_Nucleus_accumbens_basal_ganglia GTEx Brain Nucleus accumbens basal ganglia Expression 130 3239 1584
Brain_Putamen_basal_ganglia GTEx Brain Putamen basal ganglia Expression 111 2817 1316
Brain_Spinal_cord_cervical_c-1 GTEx Brain Spinal cord cervical c-1 Expression 83 2005 853
Brain_Substantia_nigra GTEx Brain Substantia nigra Expression 80 1603 711
Breast_Mammary_Tissue GTEx Breast Mammary Tissue Expression 251 5043 2199
Cells_EBV-transformed_lymphocytes GTEx Cells EBV-transformed lymphocytes Expression 117 2757 1004
Cells_Transformed_fibroblasts GTEx Cells Transformed fibroblasts Expression 300 7352 3458
CMC.BRAIN.RNASEQ CMC Brain:DLPFC Expression 452 5419 2637
CMC.BRAIN.RNASEQ_SPLICING CMC Brain:DLPFC Splicing 452 7771 3413
Colon_Sigmoid GTEx Colon Sigmoid Expression 203 4873 2161
Colon_Transverse GTEx Colon Transverse Expression 246 5315 2310
Esophagus_Gastroesophageal_Junction GTEx Esophagus Gastroesophageal Junction Expression 213 4887 2148
Esophagus_Mucosa GTEx Esophagus Mucosa Expression 358 8060 3794
Esophagus_Muscularis GTEx Esophagus Muscularis Expression 335 7772 3711
Heart_Atrial_Appendage GTEx Heart Atrial Appendage Expression 264 5670 2606
Heart_Left_Ventricle GTEx Heart Left Ventricle Expression 272 5081 2207
Liver GTEx Liver Expression 153 2913 1231
Lung GTEx Lung Expression 383 7775 3514
METSIM.ADIPOSE.RNASEQ METSIM Adipose Expression 563 4671 1560
Minor_Salivary_Gland GTEx Minor Salivary Gland Expression 85 1821 712
Muscle_Skeletal GTEx Muscle Skeletal Expression 491 7408 3515
Nerve_Tibial GTEx Nerve Tibial Expression 361 9656 5014
NTR.BLOOD.RNAARR NTR Peripheral Blood Expression 1247 2454 724
Ovary GTEx Ovary Expression 122 2808 1302
Pancreas GTEx Pancreas Expression 220 5093 2270
Pituitary GTEx Pituitary Expression 157 4401 2102
Prostate GTEx Prostate Expression 132 2796 1222
Skin_Not_Sun_Exposed_Suprapubic GTEx Skin Not Sun Exposed Suprapubic Expression 335 7457 3637
Skin_Sun_Exposed_Lower_leg GTEx Skin Sun Exposed Lower leg Expression 414 8878 4486
Small_Intestine_Terminal_Ileum GTEx Small Intestine Terminal Ileum Expression 122 2878 1115
Spleen GTEx Spleen Expression 146 4496 1690
Stomach GTEx Stomach Expression 237 4455 1865
Testis GTEx Testis Expression 225 9252 5860
Thyroid GTEx Thyroid Expression 399 9825 5257
Uterus GTEx Uterus Expression 101 2134 892
Vagina GTEx Vagina Expression 106 2012 783
Whole_Blood GTEx Whole Blood Expression 369 6006 1834
YFS.BLOOD.RNAARR YFS Whole Blood Expression 1264 4700 1688

Preparing table showing TWAS descriptives

source('/users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Phenotype_prep.config')

library(data.table)
weights<-fread(paste0(TWAS_rep, '/snp_weight_list.txt'), header=F)$V1
pheno=c('Depression','Intelligence','BMI','Height','T2D','CAD','IBD','MultiScler','RheuArth','BMI','Educational Attainment','ADHD symptoms')
sample=c('UKB','UKB','UKB','Both','UKB','UKB','UKB','UKB','UKB','TEDS','TEDS','TEDS')
gwas=c('DEPR06','COLL01','BODY03','HEIG03','DIAB05','COAD01','CROH01','SCLE02','RHEU01','BODY11', 'EDUC03', 'ADHD04')

twas_descript<-NULL
for(i in 1:length(gwas)){
  twas<-fread(paste0(TWAS_rep,'/',gwas[i],'_withCOLOC/',gwas[i],'_res_GW.txt'))
  
  twas_descript<-rbind(twas_descript, data.frame(Sample=sample[i],
                                                 Target_Phenotype=pheno[i],
                                                 GWAS=gwas[i],
                                                 Nfeat=dim(twas)[1],
                                                 Nfeat_imp=sum(!is.na(twas$TWAS.P))))
}

twas_descript<-twas_descript[order(twas_descript$Sample),]

write.csv(twas_descript, '/users/k1806347/brc_scratch/Analyses/GeRS_comparison/twas_descript_table.csv', row.names=F, quote=F)

Show TWAS descriptives

TWAS descriptives
Sample Target_Phenotype GWAS Nfeat Nfeat_imp
UKB Depression DEPR06 260598 259237
UKB Intelligence COLL01 260598 254147
UKB BMI BODY03 260598 256091
UKB T2D DIAB05 260598 260115
UKB CAD COAD01 260598 259656
UKB IBD CROH01 260598 258900
UKB MultiScler SCLE02 260598 1194
UKB RheuArth RHEU01 260598 259008
Both Height HEIG03 260598 256037
TEDS BMI BODY11 260598 256109
TEDS Educational Attainment EDUC03 260598 260171
TEDS ADHD symptoms ADHD04 260598 254736


3.6 Gene expression risk scores (GeRS)

TWAS integrates GWAS summary statistics with multi-SNP predictors of gene expression (SNP-weights) to infer gene expression associations. Multi-SNP predictors in combination with individual-level genotype data can also be used to predict the expression level of genes within an each individual. GeRS are calculated as the TWAS-effect size weighted sum of predicted gene expression levels in each individual.

This study used SNP-weights derived from multiple panels capturing eQTL effects across a range of adult tissues. SNP-weights were downloaded from the FUSION website. TWAS was performed using FUSION and SNP-weights were used to calculated predicted expression levels using PLINK. GeRS for each panel were then calculated in R. To account for the correlation between the predicted expression of nearby features due to LD, feature clumping was used to remove features within 5Mb of lead features with a predicted expression r^2 of >0.9. Due to the complex LD structure within the MHC region, only the lead feature within this region was retained.

TWAS, gene expression prediction and GeRS calculations were carried out using LD and MAF estimations from an ancestry matched reference genotype dataset. The same SNP-weights are used to predict expression levels regardless of the target samples, using MAF imputation to account for missing variation. Predicted expression levels for each gene are then standardised based on the ancestry-matched mean and standard deviation of expression. Clumping of features is performed using predicted expression level in the reference sample.

The code used to prepare the reference data required for calculating GeRS can be found here. The code used for calculating predicted expression levels in the target samples can be found here

Calculating GeRS in samples

###
# UKBB
###

. /users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config

mkdir -p ${UKBB_output}/GeRS_for_comparison/1KG_ref/EUR
> ${UKBB_output}/GeRS_for_comparison/1KG_ref/EUR/todo.txt

# Create variable listing phenotypes and corresponding GWAS
pheno=$(echo Depression Intelligence BMI Height T2D CAD IBD RheuArth)
gwas=$(echo DEPR06 COLL01 BODY03 HEIG03 DIAB05 COAD01 CROH01 RHEU01)

for i in $(seq 1 8);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')

  for weights in $(cat ~/brc_scratch/Data/TWAS_sumstats/FUSION/snp_weight_list.txt);do
    if [ ! -f ${UKBB_output}/GeRS_for_comparison/1KG_ref/EUR/${weights}/UKBB.w_hm3.EUR.${weights}.${gwas_i}.fiprofile ]; then
      echo $gwas_i $pheno_i $weights >> ${UKBB_output}/GeRS_for_comparison/1KG_ref/EUR/todo.txt
    fi
  done
  
done

for i in $(seq 1 $(wc -l ${UKBB_output}/GeRS_for_comparison/1KG_ref/EUR/todo.txt | cut -d ' ' -f 1));do
gwas=$(awk -v var="$i" 'NR == var {print $1}' ${UKBB_output}/GeRS_for_comparison/1KG_ref/EUR/todo.txt)
pheno=$(awk -v var="$i" 'NR == var {print $2}' ${UKBB_output}/GeRS_for_comparison/1KG_ref/EUR/todo.txt)
weights=$(awk -v var="$i" 'NR == var {print $3}' ${UKBB_output}/GeRS_for_comparison/1KG_ref/EUR/todo.txt)

sbatch -p brc,shared --mem 10G -n 1 /users/k1806347/brc_scratch/Software/Rscript.sh /users/k1806347/brc_scratch/Software/MyGit/GenoPred/Scripts/scaled_functionally_informed_risk_scorer/scaled_functionally_informed_risk_scorer.R \
  --targ_feature_pred ${UKBB_output}/Predicted_expression/FUSION/EUR/${weights}/UKBB.w_hm3.QCd.AllSNP.FUSION.${weights}.predictions.gz \
  --target_keep ${UKBB_output}/Phenotype/PRS_comp_subset/UKBB.${pheno}.txt \
  --ref_score ${Geno_1KG_dir}/Score_files_for_functionally_informed_risk_scores/${gwas}/1KGPhase3.w_hm3.EUR.FUSION.${gwas}.${weights}.score \
  --ref_scale ${Geno_1KG_dir}/Score_files_for_functionally_informed_risk_scores/${gwas}/1KGPhase3.w_hm3.EUR.FUSION.${gwas}.${weights}.scale \
  --pheno_name ${gwas} \
  --n_cores 1 \
  --pigz ${pigz_binary} \
  --output ${UKBB_output}/GeRS_for_comparison/1KG_ref/EUR/${weights}/UKBB.w_hm3.EUR.${weights}.${gwas}

sleep 20
done

###
# TEDS
###

. /users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config

mkdir -p ${TEDS_output_dir}/FunctionallyInformedPolygenicScores/EUR
> ${TEDS_output_dir}/FunctionallyInformedPolygenicScores/EUR/todo.txt

# Create variable listing phenotypes and corresponding GWAS
gwas=$(echo HEIG03 EDUC03 ADHD04 BODY11)

for i in $(seq 1 4);do
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')

  for weights in $(cat ~/brc_scratch/Data/TWAS_sumstats/FUSION/snp_weight_list.txt);do
    if [ ! -f ${TEDS_output_dir}/FunctionallyInformedPolygenicScores/EUR/${weights}/TEDS.w_hm3.EUR.${weights}.${gwas_i}.fiprofile ]; then
      echo $gwas_i $weights >> ${TEDS_output_dir}/FunctionallyInformedPolygenicScores/EUR/todo.txt
    fi
  done
  
done

for i in $(seq 1 $(wc -l ${TEDS_output_dir}/FunctionallyInformedPolygenicScores/EUR/todo.txt | cut -d ' ' -f 1));do
gwas=$(awk -v var="$i" 'NR == var {print $1}' ${TEDS_output_dir}/FunctionallyInformedPolygenicScores/EUR/todo.txt)
weights=$(awk -v var="$i" 'NR == var {print $2}' ${TEDS_output_dir}/FunctionallyInformedPolygenicScores/EUR/todo.txt)

sbatch -p brc,shared --mem 10G -n 1 /users/k1806347/brc_scratch/Software/Rscript.sh /users/k1806347/brc_scratch/Software/MyGit/GenoPred/Scripts/scaled_functionally_informed_risk_scorer/scaled_functionally_informed_risk_scorer.R \
  --targ_feature_pred ${TEDS_output_dir}/Predicted_expression/FUSION/EUR/${weights}/TEDS.w_hm3.QCd.AllSNP.FUSION.${weights}.predictions.gz \
  --ref_score ${Geno_1KG_dir}/Score_files_for_functionally_informed_risk_scores/${gwas}/1KGPhase3.w_hm3.EUR.FUSION.${gwas}.${weights}.score \
  --ref_scale ${Geno_1KG_dir}/Score_files_for_functionally_informed_risk_scores/${gwas}/1KGPhase3.w_hm3.EUR.FUSION.${gwas}.${weights}.scale \
  --pheno_name ${gwas} \
  --n_cores 1 \
  --pigz ${pigz_binary} \
  --output ${TEDS_output_dir}/FunctionallyInformedPolygenicScores/EUR/${weights}/TEDS.w_hm3.EUR.${weights}.${gwas}

sleep 5
done

Calculating GeRS in samples using PP4 to filter features

###
# UKBB
###

. /users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config

mkdir -p ${UKBB_output}/GeRS_for_comparison/1KG_ref_withCOLOC/EUR
> ${UKBB_output}/GeRS_for_comparison/1KG_ref_withCOLOC/EUR/todo.txt

# Create variable listing phenotypes and corresponding GWAS
pheno=$(echo Depression Intelligence BMI Height T2D CAD IBD RheuArth)
gwas=$(echo DEPR06 COLL01 BODY03 HEIG03 DIAB05 COAD01 CROH01 RHEU01)

for i in $(seq 1 8);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')

  for weights in $(cat ~/brc_scratch/Data/TWAS_sumstats/FUSION/snp_weight_list.txt);do
    if [ ! -f ${UKBB_output}/GeRS_for_comparison/1KG_ref_withCOLOC/EUR/${weights}/UKBB.w_hm3.EUR.${weights}.${gwas_i}.fiprofile ]; then
      echo $gwas_i $pheno_i $weights >> ${UKBB_output}/GeRS_for_comparison/1KG_ref_withCOLOC/EUR/todo.txt
    fi
  done
  
done

for i in $(seq 1 $(wc -l ${UKBB_output}/GeRS_for_comparison/1KG_ref_withCOLOC/EUR/todo.txt | cut -d ' ' -f 1));do
gwas=$(awk -v var="$i" 'NR == var {print $1}' ${UKBB_output}/GeRS_for_comparison/1KG_ref_withCOLOC/EUR/todo.txt)
pheno=$(awk -v var="$i" 'NR == var {print $2}' ${UKBB_output}/GeRS_for_comparison/1KG_ref_withCOLOC/EUR/todo.txt)
weights=$(awk -v var="$i" 'NR == var {print $3}' ${UKBB_output}/GeRS_for_comparison/1KG_ref_withCOLOC/EUR/todo.txt)

sbatch -p brc,shared --mem 10G -n 1 /users/k1806347/brc_scratch/Software/Rscript.sh /users/k1806347/brc_scratch/Software/MyGit/GenoPred/Scripts/scaled_functionally_informed_risk_scorer/scaled_functionally_informed_risk_scorer.R \
  --targ_feature_pred ${UKBB_output}/Predicted_expression/FUSION/EUR/${weights}/UKBB.w_hm3.QCd.AllSNP.FUSION.${weights}.predictions.gz \
  --target_keep ${UKBB_output}/Phenotype/PRS_comp_subset/UKBB.${pheno}.txt \
  --ref_score ${Geno_1KG_dir}/Score_files_for_functionally_informed_risk_scores/${gwas}_COLOC_PP4/1KGPhase3.w_hm3.EUR.FUSION.${gwas}.${weights}.score \
  --ref_scale ${Geno_1KG_dir}/Score_files_for_functionally_informed_risk_scores/${gwas}_COLOC_PP4/1KGPhase3.w_hm3.EUR.FUSION.${gwas}.${weights}.scale \
  --pheno_name ${gwas} \
  --n_cores 1 \
  --pigz ${pigz_binary} \
  --output ${UKBB_output}/GeRS_for_comparison/1KG_ref_withCOLOC/EUR/${weights}/UKBB.w_hm3.EUR.${weights}.${gwas}

sleep 20
done

###
# TEDS
###

. /users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config

mkdir -p ${TEDS_output_dir}/FunctionallyInformedPolygenicScores_withCOLOC/EUR
> ${TEDS_output_dir}/FunctionallyInformedPolygenicScores_withCOLOC/EUR/todo.txt

# Create variable listing phenotypes and corresponding GWAS
gwas=$(echo HEIG03 EDUC03 ADHD04 BODY11)

for i in $(seq 1 4);do
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')

  for weights in $(cat ~/brc_scratch/Data/TWAS_sumstats/FUSION/snp_weight_list.txt);do
    if [ ! -f ${TEDS_output_dir}/FunctionallyInformedPolygenicScores_withCOLOC/EUR/${weights}/TEDS.w_hm3.EUR.${weights}.${gwas_i}.fiprofile ]; then
      echo $gwas_i $weights >> ${TEDS_output_dir}/FunctionallyInformedPolygenicScores_withCOLOC/EUR/todo.txt
    fi
  done
  
done

for i in $(seq 1 $(wc -l ${TEDS_output_dir}/FunctionallyInformedPolygenicScores_withCOLOC/EUR/todo.txt | cut -d ' ' -f 1));do
gwas=$(awk -v var="$i" 'NR == var {print $1}' ${TEDS_output_dir}/FunctionallyInformedPolygenicScores_withCOLOC/EUR/todo.txt)
weights=$(awk -v var="$i" 'NR == var {print $2}' ${TEDS_output_dir}/FunctionallyInformedPolygenicScores_withCOLOC/EUR/todo.txt)

sbatch -p brc,shared --mem 10G -n 1 /users/k1806347/brc_scratch/Software/Rscript.sh /users/k1806347/brc_scratch/Software/MyGit/GenoPred/Scripts/scaled_functionally_informed_risk_scorer/scaled_functionally_informed_risk_scorer.R \
  --targ_feature_pred ${TEDS_output_dir}/Predicted_expression/FUSION/EUR/${weights}/TEDS.w_hm3.QCd.AllSNP.FUSION.${weights}.predictions.gz \
  --ref_score ${Geno_1KG_dir}/Score_files_for_functionally_informed_risk_scores/${gwas}_COLOC_PP4/1KGPhase3.w_hm3.EUR.FUSION.${gwas}.${weights}.score \
  --ref_scale ${Geno_1KG_dir}/Score_files_for_functionally_informed_risk_scores/${gwas}_COLOC_PP4/1KGPhase3.w_hm3.EUR.FUSION.${gwas}.${weights}.scale \
  --pheno_name ${gwas} \
  --n_cores 1 \
  --pigz ${pigz_binary} \
  --output ${TEDS_output_dir}/FunctionallyInformedPolygenicScores_withCOLOC/EUR/${weights}/TEDS.w_hm3.EUR.${weights}.${gwas}

sleep 5
done

Calculating GeRS in samples using tissue specific features

###
# UKBB
###

. /users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config

mkdir -p ${UKBB_output}/GeRS_for_comparison/1KG_ref/EUR
> ${UKBB_output}/GeRS_for_comparison/1KG_ref/EUR/todo.TissueSpecific.txt

# Create variable listing phenotypes and corresponding GWAS
pheno=$(echo Depression Intelligence BMI Height T2D CAD IBD RheuArth)
gwas=$(echo DEPR06 COLL01 BODY03 HEIG03 DIAB05 COAD01 CROH01 RHEU01)

for i in $(seq 1 8);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')

  for weights in $(cat ~/brc_scratch/Data/TWAS_sumstats/FUSION/snp_weight_list.txt);do
    if [ ! -f ${UKBB_output}/GeRS_for_comparison/1KG_ref/EUR/${weights}/UKBB.w_hm3.EUR.TissueSpecific.${weights}.${gwas_i}.fiprofile ]; then
      echo $gwas_i $pheno_i $weights >> ${UKBB_output}/GeRS_for_comparison/1KG_ref/EUR/todo.TissueSpecific.txt
    fi
  done
done

for i in $(seq 1 $(wc -l ${UKBB_output}/GeRS_for_comparison/1KG_ref/EUR/todo.TissueSpecific.txt | cut -d ' ' -f 1));do
gwas=$(awk -v var="$i" 'NR == var {print $1}' ${UKBB_output}/GeRS_for_comparison/1KG_ref/EUR/todo.TissueSpecific.txt)
pheno=$(awk -v var="$i" 'NR == var {print $2}' ${UKBB_output}/GeRS_for_comparison/1KG_ref/EUR/todo.TissueSpecific.txt)
weights=$(awk -v var="$i" 'NR == var {print $3}' ${UKBB_output}/GeRS_for_comparison/1KG_ref/EUR/todo.TissueSpecific.txt)

sbatch -p brc,shared --mem 10G -n 1 /users/k1806347/brc_scratch/Software/Rscript.sh /users/k1806347/brc_scratch/Software/MyGit/GenoPred/Scripts/scaled_functionally_informed_risk_scorer/scaled_functionally_informed_risk_scorer.R \
  --targ_feature_pred ${UKBB_output}/Predicted_expression/FUSION/EUR/${weights}/UKBB.w_hm3.QCd.AllSNP.FUSION.${weights}.predictions.gz \
  --target_keep ${UKBB_output}/Phenotype/PRS_comp_subset/UKBB.${pheno}.txt \
  --ref_score ${Geno_1KG_dir}/Score_files_for_functionally_informed_risk_scores/${gwas}/1KGPhase3.w_hm3.EUR.FUSION.TissueSpecific.${gwas}.${weights}.score \
  --ref_scale ${Geno_1KG_dir}/Score_files_for_functionally_informed_risk_scores/${gwas}/1KGPhase3.w_hm3.EUR.FUSION.TissueSpecific.${gwas}.${weights}.scale \
  --pheno_name ${gwas} \
  --n_cores 1 \
  --pigz ${pigz_binary} \
  --output ${UKBB_output}/GeRS_for_comparison/1KG_ref/EUR/${weights}/UKBB.w_hm3.EUR.TissueSpecific.${weights}.${gwas}

sleep 20
done

###
# TEDS
###

. /users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config

mkdir -p ${TEDS_output_dir}/FunctionallyInformedPolygenicScores/EUR
> ${TEDS_output_dir}/FunctionallyInformedPolygenicScores/EUR/todo.TissueSpecific.txt

# Create variable listing phenotypes and corresponding GWAS
gwas=$(echo HEIG03 EDUC03 ADHD04 BODY11)

for i in $(seq 1 4);do
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')

  for weights in $(cat ~/brc_scratch/Data/TWAS_sumstats/FUSION/snp_weight_list.txt);do
    if [ ! -f ${TEDS_output_dir}/FunctionallyInformedPolygenicScores/EUR/${weights}/TEDS.w_hm3.EUR.TissueSpecific.${weights}.${gwas_i}.fiprofile ]; then
      echo $gwas_i $weights >> ${TEDS_output_dir}/FunctionallyInformedPolygenicScores/EUR/todo.TissueSpecific.txt
    fi
  done
  
done

for i in $(seq 1 $(wc -l ${TEDS_output_dir}/FunctionallyInformedPolygenicScores/EUR/todo.TissueSpecific.txt | cut -d ' ' -f 1));do
gwas=$(awk -v var="$i" 'NR == var {print $1}' ${TEDS_output_dir}/FunctionallyInformedPolygenicScores/EUR/todo.TissueSpecific.txt)
weights=$(awk -v var="$i" 'NR == var {print $2}' ${TEDS_output_dir}/FunctionallyInformedPolygenicScores/EUR/todo.TissueSpecific.txt)

sbatch -p brc,shared --mem 10G -n 1 /users/k1806347/brc_scratch/Software/Rscript.sh /users/k1806347/brc_scratch/Software/MyGit/GenoPred/Scripts/scaled_functionally_informed_risk_scorer/scaled_functionally_informed_risk_scorer.R \
  --targ_feature_pred ${TEDS_output_dir}/Predicted_expression/FUSION/EUR/${weights}/TEDS.w_hm3.QCd.AllSNP.FUSION.${weights}.predictions.gz \
  --ref_score ${Geno_1KG_dir}/Score_files_for_functionally_informed_risk_scores/${gwas}/1KGPhase3.w_hm3.EUR.FUSION.TissueSpecific.${gwas}.${weights}.score \
  --ref_scale ${Geno_1KG_dir}/Score_files_for_functionally_informed_risk_scores/${gwas}/1KGPhase3.w_hm3.EUR.FUSION.TissueSpecific.${gwas}.${weights}.scale \
  --pheno_name ${gwas} \
  --n_cores 1 \
  --pigz ${pigz_binary} \
  --output ${TEDS_output_dir}/FunctionallyInformedPolygenicScores/EUR/${weights}/TEDS.w_hm3.EUR.TissueSpecific.${weights}.${gwas}

sleep 5
done

Calculating GeRS in samples using colocalised features

###
# UKBB
###

. /users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config

mkdir -p ${UKBB_output}/GeRS_for_comparison/1KG_ref_pT_withColoc/EUR
> ${UKBB_output}/GeRS_for_comparison/1KG_ref_pT_withColoc/EUR/todo.txt

# Create variable listing phenotypes and corresponding GWAS
pheno=$(echo Depression Intelligence BMI Height T2D CAD IBD RheuArth)
gwas=$(echo DEPR06 COLL01 BODY03 HEIG03 DIAB05 COAD01 CROH01 RHEU01)

for i in $(seq 1 8);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')

  for weights in $(cat ~/brc_scratch/Data/TWAS_sumstats/FUSION/snp_weight_list.txt);do
    if [ ! -f ${UKBB_output}/GeRS_for_comparison/1KG_ref_pT_withColoc/EUR/${weights}/UKBB.w_hm3.EUR.${weights}.${gwas_i}.fiprofile ]; then
      echo $gwas_i $pheno_i $weights >> ${UKBB_output}/GeRS_for_comparison/1KG_ref_pT_withColoc/EUR/todo.txt
    fi
  done
  
done

for i in $(seq 1 $(wc -l ${UKBB_output}/GeRS_for_comparison/1KG_ref_pT_withColoc/EUR/todo.txt | cut -d ' ' -f 1));do
gwas=$(awk -v var="$i" 'NR == var {print $1}' ${UKBB_output}/GeRS_for_comparison/1KG_ref_pT_withColoc/EUR/todo.txt)
pheno=$(awk -v var="$i" 'NR == var {print $2}' ${UKBB_output}/GeRS_for_comparison/1KG_ref_pT_withColoc/EUR/todo.txt)
weights=$(awk -v var="$i" 'NR == var {print $3}' ${UKBB_output}/GeRS_for_comparison/1KG_ref_pT_withColoc/EUR/todo.txt)

sbatch -p brc,shared --mem 10G -n 1 /users/k1806347/brc_scratch/Software/Rscript.sh /users/k1806347/brc_scratch/Software/MyGit/GenoPred/Scripts/scaled_functionally_informed_risk_scorer/scaled_functionally_informed_risk_scorer.R \
  --targ_feature_pred ${UKBB_output}/Predicted_expression/FUSION/EUR/${weights}/UKBB.w_hm3.QCd.AllSNP.FUSION.${weights}.predictions.gz \
  --target_keep ${UKBB_output}/Phenotype/PRS_comp_subset/UKBB.${pheno}.txt \
  --ref_score ${Geno_1KG_dir}/Score_files_for_functionally_informed_risk_scores/${gwas}_pT_withColoc/1KGPhase3.w_hm3.EUR.FUSION.${gwas}.${weights}.score \
  --ref_scale ${Geno_1KG_dir}/Score_files_for_functionally_informed_risk_scores/${gwas}_pT_withColoc/1KGPhase3.w_hm3.EUR.FUSION.${gwas}.${weights}.scale \
  --pheno_name ${gwas} \
  --n_cores 1 \
  --pigz ${pigz_binary} \
  --output ${UKBB_output}/GeRS_for_comparison/1KG_ref_pT_withColoc/EUR/${weights}/UKBB.w_hm3.EUR.${weights}.${gwas}

sleep 20
done

###
# TEDS
###

. /users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config

mkdir -p ${TEDS_output_dir}/FunctionallyInformedPolygenicScores_pT_withColoc/EUR
> ${TEDS_output_dir}/FunctionallyInformedPolygenicScores_pT_withColoc/EUR/todo.txt

# Create variable listing phenotypes and corresponding GWAS
gwas=$(echo HEIG03 EDUC03 ADHD04 BODY11)

for i in $(seq 1 4);do
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')

  for weights in $(cat ~/brc_scratch/Data/TWAS_sumstats/FUSION/snp_weight_list.txt);do
    if [ ! -f ${TEDS_output_dir}/FunctionallyInformedPolygenicScores_pT_withColoc/EUR/${weights}/TEDS.w_hm3.EUR.${weights}.${gwas_i}.fiprofile ]; then
      echo $gwas_i $weights >> ${TEDS_output_dir}/FunctionallyInformedPolygenicScores_pT_withColoc/EUR/todo.txt
    fi
  done
  
done

for i in $(seq 1 $(wc -l ${TEDS_output_dir}/FunctionallyInformedPolygenicScores_pT_withColoc/EUR/todo.txt | cut -d ' ' -f 1));do
gwas=$(awk -v var="$i" 'NR == var {print $1}' ${TEDS_output_dir}/FunctionallyInformedPolygenicScores_pT_withColoc/EUR/todo.txt)
weights=$(awk -v var="$i" 'NR == var {print $2}' ${TEDS_output_dir}/FunctionallyInformedPolygenicScores_pT_withColoc/EUR/todo.txt)

sbatch -p brc,shared --mem 10G -n 1 /users/k1806347/brc_scratch/Software/Rscript.sh /users/k1806347/brc_scratch/Software/MyGit/GenoPred/Scripts/scaled_functionally_informed_risk_scorer/scaled_functionally_informed_risk_scorer.R \
  --targ_feature_pred ${TEDS_output_dir}/Predicted_expression/FUSION/EUR/${weights}/TEDS.w_hm3.QCd.AllSNP.FUSION.${weights}.predictions.gz \
  --ref_score ${Geno_1KG_dir}/Score_files_for_functionally_informed_risk_scores/${gwas}_pT_withColoc/1KGPhase3.w_hm3.EUR.FUSION.${gwas}.${weights}.score \
  --ref_scale ${Geno_1KG_dir}/Score_files_for_functionally_informed_risk_scores/${gwas}_pT_withColoc/1KGPhase3.w_hm3.EUR.FUSION.${gwas}.${weights}.scale \
  --pheno_name ${gwas} \
  --n_cores 1 \
  --pigz ${pigz_binary} \
  --output ${TEDS_output_dir}/FunctionallyInformedPolygenicScores_pT_withColoc/EUR/${weights}/TEDS.w_hm3.EUR.${weights}.${gwas}

sleep 5
done


3.7 Functionally-informed polygenic scoring

Functionally informed polygenic scores were derived as follows:

  1. TWAS SNP-weight-stratified p-value thresholding and clumping (eQTL pT+clump)

Calculating GeRS in samples

# Set required variables
. /users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config

#######
# UKBB
#######
# Create variable listing phenotypes and corresponding GWAS
pheno=$(echo Depression Intelligence BMI Height T2D CAD IBD RheuArth)
gwas=$(echo DEPR06 COLL01 BODY03 HEIG03 DIAB05 COAD01 CROH01 RHEU01)

# Calculate polygenic scores using 1KG reference
for i in $(seq 1 8);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')

  sbatch --mem 10G -p brc,shared -J pT_clump /users/k1806347/brc_scratch/Software/Rscript.sh /users/k1806347/brc_scratch/Software/MyGit/GenoPred/Scripts/Scaled_polygenic_scorer/Scaled_polygenic_scorer.R \
    --target_plink_chr ${UKBB_output}/Genotype/Harmonised/UKBB.w_hm3.QCd.AllSNP.chr \
    --target_keep ${UKBB_output}/Phenotype/PRS_comp_subset/UKBB.${pheno_i}.txt \
    --ref_score ${Geno_1KG_dir}/Score_files_for_poylygenic_stratified_TWAS_Gene/${gwas_i}_withCOLOC/1KGPhase3.w_hm3.${gwas_i} \
    --ref_scale ${Geno_1KG_dir}/Score_files_for_poylygenic_stratified_TWAS_Gene/${gwas_i}_withCOLOC/1KGPhase3.w_hm3.${gwas_i}.EUR.scale \
    --ref_freq_chr ${Geno_1KG_dir}/freq_files/EUR/1KGPhase3.w_hm3.EUR.chr \
    --plink ${plink1_9} \
    --pheno_name ${gwas_i} \
    --output ${UKBB_output}/PRS_for_comparison/1KG_ref_withCOLOC/pt_clump_stratified_TWAS_Gene/${gwas_i}/UKBB.subset.w_hm3.${gwas_i}
done

#######
# TEDS
#######
# Create variable listing phenotypes and corresponding GWAS
gwas=$(echo HEIG03 EDUC03 ADHD04 BODY11)

# Calculate polygenic scores using 1KG reference
for i in $(seq 1 4);do
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')

  sbatch --mem 10G -p brc,shared -J pT_clump /users/k1806347/brc_scratch/Software/Rscript.sh /users/k1806347/brc_scratch/Software/MyGit/GenoPred/Scripts/Scaled_polygenic_scorer/Scaled_polygenic_scorer.R \
    --target_plink_chr ${TEDS_output_dir}/Genotype/Harmonised/TEDS.w_hm3.QCd.AllSNP.chr \
    --target_keep ${TEDS_output_dir}/Projected_PCs/Ancestry_idenitfier/TEDS.w_hm3.AllAncestry.EUR.keep \
    --ref_score ${Geno_1KG_dir}/Score_files_for_poylygenic_stratified_TWAS_Gene/${gwas_i}/1KGPhase3.w_hm3.${gwas_i} \
    --ref_scale ${Geno_1KG_dir}/Score_files_for_poylygenic_stratified_TWAS_Gene/${gwas_i}/1KGPhase3.w_hm3.${gwas_i}.EUR.scale \
    --ref_freq_chr ${Geno_1KG_dir}/freq_files/EUR/1KGPhase3.w_hm3.EUR.chr \
    --plink ${plink1_9} \
    --pheno_name ${gwas_i} \
    --output ${TEDS_output_dir}/PolygenicScores_stratified_TWAS_Gene/${gwas_i}/TEDS.subset.w_hm3.${gwas_i}
done


3.8 Functionally-agnostic polygenic scoring

Polygenic scores were derived using PRScs-auto, a Bayesian shrinkage method that I have shown to perform well previously.

Polygenic scores were derived using a reference standardised pipeline. The European subset of the 1KG reference was used (described here). In brief, all scores were derived using HapMap3 SNPs only, modelling LD based on the reference. Any HapMap3 missing in the target sample are imputed using the reference estimated allele frequency.

Polygenic scoring in target samples has been previously documented here


3.8.1 Derive pT+clump polygenic scores without retaining single variant in the MHC

Only do this as a sensitivity analysis for Rheumatoid arthritis

Show code

# Generate scoring files
. /users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Pipeline_prep.config

sbatch -p shared,brc --mem=6G /users/k1806347/brc_scratch/Software/Rscript.sh /users/k1806347/brc_scratch/Software/MyGit/GenoPred/Scripts/polygenic_score_file_creator/polygenic_score_file_creator.R \
  --ref_plink_chr ${Geno_1KG_dir}/1KGPhase3.w_hm3.chr \
  --ref_keep ${Geno_1KG_dir}/keep_files/EUR_samples.keep \
  --sumstats ${gwas_rep}/RHEU01.sumstats.gz \
  --plink ${plink1_9} \
  --memory 3000 \
  --prune_hla F \
  --output ${Geno_1KG_dir}/Score_files_for_poylygenic/RHEU01.noMHCClump/1KGPhase3.w_hm3.RHEU01.noMHCClump \
  --ref_pop_scale ${Geno_1KG_dir}/super_pop_keep.list

# Calculate scores in UKB
. /users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config

sbatch --mem 10G -p brc,shared /users/k1806347/brc_scratch/Software/Rscript.sh /users/k1806347/brc_scratch/Software/MyGit/GenoPred/Scripts/Scaled_polygenic_scorer/Scaled_polygenic_scorer.R \
    --target_plink_chr ${UKBB_output}/Genotype/Harmonised/UKBB.w_hm3.QCd.AllSNP.chr \
    --target_keep ${UKBB_output}/Phenotype/PRS_comp_subset/UKBB.RheuArth.txt \
    --ref_score ${Geno_1KG_dir}/Score_files_for_poylygenic/RHEU01.noMHCClump/1KGPhase3.w_hm3.RHEU01.noMHCClump \
    --ref_scale ${Geno_1KG_dir}/Score_files_for_poylygenic/RHEU01.noMHCClump/1KGPhase3.w_hm3.RHEU01.noMHCClump.EUR.scale \
    --ref_freq_chr ${Geno_1KG_dir}/freq_files/EUR/1KGPhase3.w_hm3.EUR.chr \
    --plink ${plink1_9} \
    --pheno_name RHEU01 \
    --output ${UKBB_output}/PRS_for_comparison/1KG_ref/pt_clump/RHEU01.noMHCClump/UKBB.subset.w_hm3.RHEU01.noMHCClump


3.9 Estimating predictive ability

Models containing a single predictor were derived using generalised linear model (GLM). Models containing multiple predictors were derived using elastic-net regularisation to reduce the likelihood of overfitting and account for multicollinearity when modelling highly correlated predictors. Nested cross validation was used to estimate the variance explained by models to avoid overfitting. This involves an outer loop, splitting the data into training and test datasets, deriving the model using 10-fold cross validation in the training dataset, saving model predictions for the test dataset, combining the test predictions for each outer loop and estimating the variance explained.

Model building and evaluation was performed using an Rscript called Model_builder_V2_nested.R (more information here).

3.9.1 UK Biobank

Single-pT vs. Multi-pT

##############################
# Evaluating predictive utility of GeRS across multiple pTs individually and in combination
##############################
. /users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config

# Make required directories
for pheno_i in $(echo Depression Intelligence BMI Height T2D CAD IBD MultiScler RheuArth);do
mkdir -p /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withGeRSs
done

# Create a file listing the predictors files
pheno=$(echo Depression Intelligence BMI Height T2D CAD IBD RheuArth)
gwas=$(echo DEPR06 COLL01 BODY03 HEIG03 DIAB05 COAD01 CROH01 RHEU01)
weights=$(cat ${TWAS_rep}/snp_weight_list.txt)

for i in $(seq 1 8);do
for weight in ${weights};do
pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')

cat > /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/UKBB.w_hm3.${weight}.${gwas_i}.EUR-GeRSs.predictor_groups <<EOF
predictors 
${UKBB_output}/GeRS_for_comparison/1KG_ref/EUR/${weight}/UKBB.w_hm3.EUR.${weight}.${gwas_i}.fiprofile
EOF

done
done

# Derive and evaluate models
pheno=$(echo Depression Intelligence BMI Height T2D CAD IBD RheuArth)
gwas=$(echo DEPR06 COLL01 BODY03 HEIG03 DIAB05 COAD01 CROH01 RHEU01)
prev=$(echo 0.15 NA NA NA 0.05 0.03 0.013 0.00164 0.005)
weights=$(cat ${TWAS_rep}/snp_weight_list.txt)

# 1KG reference
for i in $(seq 1 8);do
for weight in ${weights};do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  pheno_file_i=$(echo ${pheno_file} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  prev_i=$(echo ${prev} | cut -f ${i} -d ' ')

sbatch --mem 10G -n 2 -p brc,shared /users/k1806347/brc_scratch/Software/Rscript.sh /users/k1806347/brc_scratch/Software/MyGit/GenoPred/Scripts/Model_builder/Model_builder_V2_nested.R \
    --pheno ${UKBB_output}/Phenotype/PRS_comp_subset/UKBB.${pheno_i}.txt \
    --keep /users/k1806347/brc_scratch/Analyses/PRS_comparison/UKBB_outcomes_for_prediction/ukb18177_glanville_post_qc_id_list.UpdateIDs.fam \
    --out /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/UKBB.w_hm3.${weight}.${gwas_i}.EUR-GeRSs \
    --n_core 2 \
    --compare_predictors T \
    --assoc T \
    --outcome_pop_prev ${prev_i} \
    --predictors /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/UKBB.w_hm3.${weight}.${gwas_i}.EUR-GeRSs.predictor_groups
done
sleep 200
done

Single-tissue vs. Multi-tissue

##############################
# Evaluating predictive utility of GeRS across multiple tissues individually and in combination
##############################
. /users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config

# Make required directories
for pheno_i in $(echo Depression Intelligence BMI Height T2D CAD IBD MultiScler RheuArth);do
mkdir -p /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withGeRSs
done

# Create a file listing the predictors files
pheno=$(echo Depression Intelligence BMI Height T2D CAD IBD RheuArth)
gwas=$(echo DEPR06 COLL01 BODY03 HEIG03 DIAB05 COAD01 CROH01 RHEU01)
weights=$(cat ${TWAS_rep}/snp_weight_list.txt)

for i in $(seq 1 8);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  
  echo "predictors group" > /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/UKBB.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs.predictor_groups

  for weight in ${weights}; do
    echo ${UKBB_output}/GeRS_for_comparison/1KG_ref/EUR/${weight}/UKBB.w_hm3.EUR.${weight}.${gwas_i}.fiprofile ${weight} >> /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/UKBB.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs.predictor_groups
  done
  
done

# Derive and evaluate models
pheno=$(echo Depression Intelligence BMI Height T2D CAD IBD RheuArth)
gwas=$(echo DEPR06 COLL01 BODY03 HEIG03 DIAB05 COAD01 CROH01 RHEU01)
prev=$(echo 0.15 NA NA NA 0.05 0.03 0.013 0.00164 0.005)
weights=YFS.BLOOD.RNAARR

# 1KG reference
for i in $(seq 1 8);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  pheno_file_i=$(echo ${pheno_file} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  prev_i=$(echo ${prev} | cut -f ${i} -d ' ')

sbatch --mem 10G -n 2 -p brc,shared /users/k1806347/brc_scratch/Software/Rscript.sh /users/k1806347/brc_scratch/Software/MyGit/GenoPred/Scripts/Model_builder/Model_builder_V2_nested.R \
    --pheno ${UKBB_output}/Phenotype/PRS_comp_subset/UKBB.${pheno_i}.txt \
    --keep /users/k1806347/brc_scratch/Analyses/PRS_comparison/UKBB_outcomes_for_prediction/ukb18177_glanville_post_qc_id_list.UpdateIDs.fam \
    --out /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/UKBB.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs \
    --n_core 2 \
    --compare_predictors F \
    --assoc T \
    --outcome_pop_prev ${prev_i} \
    --predictors /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/UKBB.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs.predictor_groups
done

Multi-tissue per pT

##############################
# Evaluating predictive utility of GeRS across multiple tissues for each pT seperately
##############################
. /users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config

# Make required directories
for pheno_i in $(echo Depression Intelligence BMI Height T2D CAD IBD MultiScler RheuArth);do
mkdir -p /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withGeRSs
done

# Split the GeRS files by pT
module add apps/R
R

source('/users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config')

gwas<-c('DEPR06','COLL01','BODY03','HEIG03','DIAB05','COAD01','CROH01','RHEU01')

weights<-read.table('~/brc_scratch/Data/TWAS_sumstats/FUSION/snp_weight_list.txt', stringsAsFactors=F)$V1

library(data.table)

for(gwas_i in gwas){
print(gwas_i)
  for(weights_i in weights){

    GeRS<-fread(paste0(UKBB_output,'/GeRS_for_comparison/1KG_ref/EUR/',weights_i,'/UKBB.w_hm3.EUR.',weights_i,'.',gwas_i,'.fiprofile'))
  
    GeRS_pT<-gsub('.*_','',names(GeRS)[-1:-2])
    
    for(pT_i in GeRS_pT){
      write.table(GeRS[,c('FID','IID',paste0(gwas_i,'_',pT_i)), with=F], paste0(UKBB_output,'/GeRS_for_comparison/1KG_ref/EUR/',weights_i,'/UKBB.w_hm3.EUR.',weights_i,'.',gwas_i,'.pT_',pT_i,'.fiprofile'),col.names=T, row.names=F, quote=F)
    }
  }
}

q()
n

# Create a file listing the predictors files
pheno=$(echo Depression Intelligence BMI Height T2D CAD IBD RheuArth)
gwas=$(echo DEPR06 COLL01 BODY03 HEIG03 DIAB05 COAD01 CROH01 RHEU01)
weights=$(cat ${TWAS_rep}/snp_weight_list.txt)
pT=$(echo 1e-06 1e-05 1e-04 0.001 0.01 0.05 0.1 0.5 1)

for i in $(seq 1 8);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  
  echo "predictors group" > /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/UKBB.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs.per_PT.predictor_groups
  
  for pT_i in ${pT};do
    for weight in ${weights}; do
        if [ -f ${UKBB_output}/GeRS_for_comparison/1KG_ref/EUR/${weight}/UKBB.w_hm3.EUR.${weight}.${gwas_i}.pT_${pT_i}.fiprofile ]; then

        echo ${UKBB_output}/GeRS_for_comparison/1KG_ref/EUR/${weight}/UKBB.w_hm3.EUR.${weight}.${gwas_i}.pT_${pT_i}.fiprofile ${pT_i} >> /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/UKBB.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs.per_PT.predictor_groups
      
        fi
    done
  done
  
done

# Derive and evaluate models
pheno=$(echo Depression Intelligence BMI Height T2D CAD IBD RheuArth)
gwas=$(echo DEPR06 COLL01 BODY03 HEIG03 DIAB05 COAD01 CROH01 RHEU01)
prev=$(echo 0.15 NA NA NA 0.05 0.03 0.013 0.00164 0.005)

# 1KG reference
for i in $(seq 1 8);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  pheno_file_i=$(echo ${pheno_file} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  prev_i=$(echo ${prev} | cut -f ${i} -d ' ')

sbatch --mem 20G -n 4 -p brc,shared /users/k1806347/brc_scratch/Software/Rscript.sh /users/k1806347/brc_scratch/Software/MyGit/GenoPred/Scripts/Model_builder/Model_builder_V2_nested.R \
    --pheno ${UKBB_output}/Phenotype/PRS_comp_subset/UKBB.${pheno_i}.txt \
    --keep /users/k1806347/brc_scratch/Analyses/PRS_comparison/UKBB_outcomes_for_prediction/ukb18177_glanville_post_qc_id_list.UpdateIDs.fam \
    --out /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/UKBB.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs.per_PT \
    --n_core 4 \
    --compare_predictors F \
    --assoc T \
    --outcome_pop_prev ${prev_i} \
    --predictors /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/UKBB.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs.per_PT.predictor_groups
done

Single-tissue vs. Multi-tissue (PP4+clump)

##############################
# Evaluating predictive utility of GeRS across multiple tissues individually and in combination
##############################
. /users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config

# Make required directories
for pheno_i in $(echo Depression Intelligence BMI Height T2D CAD IBD MultiScler RheuArth);do
mkdir -p /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withGeRSs
done

# Create a file listing the predictors files
pheno=$(echo Depression Intelligence BMI Height T2D CAD IBD RheuArth)
gwas=$(echo DEPR06 COLL01 BODY03 HEIG03 DIAB05 COAD01 CROH01 RHEU01)
weights=$(cat ${TWAS_rep}/snp_weight_list.txt)

for i in $(seq 1 8);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  
  echo "predictors group" > /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/UKBB.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs_PP4.predictor_groups

  for weight in ${weights}; do
    echo ${UKBB_output}/GeRS_for_comparison/1KG_ref_withCOLOC/EUR/${weight}/UKBB.w_hm3.EUR.${weight}.${gwas_i}.fiprofile ${weight} >> /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/UKBB.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs_PP4.predictor_groups
  done
  
done

# Derive and evaluate models
pheno=$(echo Depression Intelligence BMI Height T2D CAD IBD RheuArth)
gwas=$(echo DEPR06 COLL01 BODY03 HEIG03 DIAB05 COAD01 CROH01 RHEU01)
prev=$(echo 0.15 NA NA NA 0.05 0.03 0.013 0.00164 0.005)
weights=YFS.BLOOD.RNAARR

# 1KG reference
for i in $(seq 1 8);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  pheno_file_i=$(echo ${pheno_file} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  prev_i=$(echo ${prev} | cut -f ${i} -d ' ')

sbatch --mem 20G -n 4 -p brc,shared /users/k1806347/brc_scratch/Software/Rscript.sh /users/k1806347/brc_scratch/Software/MyGit/GenoPred/Scripts/Model_builder/Model_builder_V2_nested.R \
    --pheno ${UKBB_output}/Phenotype/PRS_comp_subset/UKBB.${pheno_i}.txt \
    --keep /users/k1806347/brc_scratch/Analyses/PRS_comparison/UKBB_outcomes_for_prediction/ukb18177_glanville_post_qc_id_list.UpdateIDs.fam \
    --out /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/UKBB.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs_PP4 \
    --n_core 4 \
    --compare_predictors F \
    --assoc T \
    --outcome_pop_prev ${prev_i} \
    --predictors /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/UKBB.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs_PP4.predictor_groups
done

Single-tissue vs. Multi-tissue (TissueSpecific)

##############################
# Evaluating predictive utility of GeRS across multiple tissues individually and in combination
##############################
. /users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config

# Make required directories
for pheno_i in $(echo Depression Intelligence BMI Height T2D CAD IBD MultiScler RheuArth);do
mkdir -p /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withGeRSs
done

# Create a file listing the predictors files
pheno=$(echo Depression Intelligence BMI Height T2D CAD IBD RheuArth)
gwas=$(echo DEPR06 COLL01 BODY03 HEIG03 DIAB05 COAD01 CROH01 RHEU01)
weights=$(cat ${TWAS_rep}/snp_weight_list.txt)

for i in $(seq 1 8);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  
  echo "predictors group" > /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/UKBB.w_hm3.AllTissue.TissueSpecific.${gwas_i}.EUR-GeRSs.predictor_groups

  for weight in ${weights}; do
    echo ${UKBB_output}/GeRS_for_comparison/1KG_ref/EUR/${weight}/UKBB.w_hm3.EUR.TissueSpecific.${weight}.${gwas_i}.fiprofile ${weight} >> /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/UKBB.w_hm3.AllTissue.TissueSpecific.${gwas_i}.EUR-GeRSs.predictor_groups
  done
  
done

# Derive and evaluate models
pheno=$(echo Depression Intelligence BMI Height T2D CAD IBD RheuArth)
gwas=$(echo DEPR06 COLL01 BODY03 HEIG03 DIAB05 COAD01 CROH01 RHEU01)
prev=$(echo 0.15 NA NA NA 0.05 0.03 0.013 0.00164 0.005)
weights=YFS.BLOOD.RNAARR

# 1KG reference
for i in $(seq 1 8);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  pheno_file_i=$(echo ${pheno_file} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  prev_i=$(echo ${prev} | cut -f ${i} -d ' ')

sbatch --mem 20G -n 4 -p brc,shared /users/k1806347/brc_scratch/Software/Rscript.sh /users/k1806347/brc_scratch/Software/MyGit/GenoPred/Scripts/Model_builder/Model_builder_V2_nested.R \
    --pheno ${UKBB_output}/Phenotype/PRS_comp_subset/UKBB.${pheno_i}.txt \
    --keep /users/k1806347/brc_scratch/Analyses/PRS_comparison/UKBB_outcomes_for_prediction/ukb18177_glanville_post_qc_id_list.UpdateIDs.fam \
    --out /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/UKBB.w_hm3.AllTissue.TissueSpecific.${gwas_i}.EUR-GeRSs \
    --n_core 4 \
    --compare_predictors F \
    --assoc T \
    --outcome_pop_prev ${prev_i} \
    --predictors /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/UKBB.w_hm3.AllTissue.TissueSpecific.${gwas_i}.EUR-GeRSs.predictor_groups
done

Single-tissue vs. Multi-tissue (colocalised)

##############################
# Evaluating predictive utility of GeRS across multiple tissues individually and in combination
##############################
. /users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config

# Make required directories
for pheno_i in $(echo Depression Intelligence BMI Height T2D CAD IBD MultiScler RheuArth);do
mkdir -p /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withGeRSs
done

# Create a file listing the predictors files
pheno=$(echo Depression Intelligence BMI Height T2D CAD IBD RheuArth)
gwas=$(echo DEPR06 COLL01 BODY03 HEIG03 DIAB05 COAD01 CROH01 RHEU01)
weights=$(cat ${TWAS_rep}/snp_weight_list.txt)

for i in $(seq 1 8);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  
  echo "predictors group" > /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/UKBB.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs_pT_withColoc.predictor_groups

  for weight in ${weights}; do

    if [ -f ${UKBB_output}/GeRS_for_comparison/1KG_ref_pT_withColoc/EUR/${weight}/UKBB.w_hm3.EUR.${weight}.${gwas_i}.fiprofile ]; then
  
      echo ${UKBB_output}/GeRS_for_comparison/1KG_ref_pT_withColoc/EUR/${weight}/UKBB.w_hm3.EUR.${weight}.${gwas_i}.fiprofile ${weight} >> /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/UKBB.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs_pT_withColoc.predictor_groups
  
    fi
  
  done
  
done

# Derive and evaluate models
pheno=$(echo Depression Intelligence BMI Height T2D CAD IBD RheuArth)
gwas=$(echo DEPR06 COLL01 BODY03 HEIG03 DIAB05 COAD01 CROH01 RHEU01)
prev=$(echo 0.15 NA NA NA 0.05 0.03 0.013 0.00164 0.005)

# 1KG reference
for i in $(seq 1 8);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  pheno_file_i=$(echo ${pheno_file} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  prev_i=$(echo ${prev} | cut -f ${i} -d ' ')

sbatch --mem 20G -n 4 -p brc,shared /users/k1806347/brc_scratch/Software/Rscript.sh /users/k1806347/brc_scratch/Software/MyGit/GenoPred/Scripts/Model_builder/Model_builder_V2_nested.R \
    --pheno ${UKBB_output}/Phenotype/PRS_comp_subset/UKBB.${pheno_i}.txt \
    --keep /users/k1806347/brc_scratch/Analyses/PRS_comparison/UKBB_outcomes_for_prediction/ukb18177_glanville_post_qc_id_list.UpdateIDs.fam \
    --out /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/UKBB.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs_pT_withColoc \
    --n_core 4 \
    --compare_predictors F \
    --assoc T \
    --outcome_pop_prev ${prev_i} \
    --predictors /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/UKBB.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs_pT_withColoc.predictor_groups
done

Multi-tissue per pT (colocalised)

##############################
# Evaluating predictive utility of GeRS across multiple tissues for each pT seperately
##############################
. /users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config

# Make required directories
for pheno_i in $(echo Depression Intelligence BMI Height T2D CAD IBD MultiScler RheuArth);do
mkdir -p /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withGeRSs
done

# Split the GeRS files by pT
module add apps/R
R

source('/users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config')

gwas<-c('DEPR06','COLL01','BODY03','HEIG03','DIAB05','COAD01','CROH01','RHEU01')

weights<-read.table('~/brc_scratch/Data/TWAS_sumstats/FUSION/snp_weight_list.txt', stringsAsFactors=F)$V1

library(data.table)

for(gwas_i in gwas){
print(gwas_i)
  for(weights_i in weights){

    if(file.exists(paste0(UKBB_output,'/GeRS_for_comparison/1KG_ref_pT_withColoc/EUR/',weights_i,'/UKBB.w_hm3.EUR.',weights_i,'.',gwas_i,'.fiprofile')) == T){
      
      GeRS<-fread(paste0(UKBB_output,'/GeRS_for_comparison/1KG_ref_pT_withColoc/EUR/',weights_i,'/UKBB.w_hm3.EUR.',weights_i,'.',gwas_i,'.fiprofile'))
    
      GeRS_pT<-gsub('.*_','',names(GeRS)[-1:-2])
      
      for(pT_i in GeRS_pT){
        write.table(GeRS[,c('FID','IID',paste0(gwas_i,'_',pT_i)), with=F], paste0(UKBB_output,'/GeRS_for_comparison/1KG_ref_pT_withColoc/EUR/',weights_i,'/UKBB.w_hm3.EUR.',weights_i,'.',gwas_i,'.pT_',pT_i,'.fiprofile'),col.names=T, row.names=F, quote=F)
      }
    }
  }
}

q()
n

# Create a file listing the predictors files
pheno=$(echo Depression Intelligence BMI Height T2D CAD IBD RheuArth)
gwas=$(echo DEPR06 COLL01 BODY03 HEIG03 DIAB05 COAD01 CROH01 RHEU01)
weights=$(cat ${TWAS_rep}/snp_weight_list.txt)
pT=$(echo 1e-06 1e-05 1e-04 0.001 0.01 0.05 0.1 0.5 1)

for i in $(seq 1 8);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  
  echo "predictors group" > /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/UKBB.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs_pT_withColoc.per_PT.predictor_groups
  
  for pT_i in ${pT};do
    for weight in ${weights}; do
        if [ -f ${UKBB_output}/GeRS_for_comparison/1KG_ref_pT_withColoc/EUR/${weight}/UKBB.w_hm3.EUR.${weight}.${gwas_i}.pT_${pT_i}.fiprofile ]; then

        echo ${UKBB_output}/GeRS_for_comparison/1KG_ref_pT_withColoc/EUR/${weight}/UKBB.w_hm3.EUR.${weight}.${gwas_i}.pT_${pT_i}.fiprofile ${pT_i} >> /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/UKBB.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs_pT_withColoc.per_PT.predictor_groups
      
        fi
    done
  done
  
done

# Derive and evaluate models
pheno=$(echo Depression Intelligence BMI Height T2D CAD IBD RheuArth)
gwas=$(echo DEPR06 COLL01 BODY03 HEIG03 DIAB05 COAD01 CROH01 RHEU01)
prev=$(echo 0.15 NA NA NA 0.05 0.03 0.013 0.00164 0.005)

# 1KG reference
for i in $(seq 1 8);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  pheno_file_i=$(echo ${pheno_file} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  prev_i=$(echo ${prev} | cut -f ${i} -d ' ')

sbatch --mem 20G -n 4 -p brc,shared /users/k1806347/brc_scratch/Software/Rscript.sh /users/k1806347/brc_scratch/Software/MyGit/GenoPred/Scripts/Model_builder/Model_builder_V2_nested.R \
    --pheno ${UKBB_output}/Phenotype/PRS_comp_subset/UKBB.${pheno_i}.txt \
    --keep /users/k1806347/brc_scratch/Analyses/PRS_comparison/UKBB_outcomes_for_prediction/ukb18177_glanville_post_qc_id_list.UpdateIDs.fam \
    --out /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/UKBB.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs_pT_withColoc.per_PT \
    --n_core 4 \
    --compare_predictors F \
    --assoc T \
    --outcome_pop_prev ${prev_i} \
    --predictors /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/UKBB.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs_pT_withColoc.per_PT.predictor_groups
done

GeRS + PRS

##############################
# Evaluating predictive utility of GeRS and PRS individually and in combination
##############################
. /users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config

# Make required directories
for pheno_i in $(echo Depression Intelligence BMI Height T2D CAD IBD RheuArth);do
mkdir -p /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs
done

# Create a file listing the predictors files
pheno=$(echo Depression Intelligence BMI Height T2D CAD IBD RheuArth)
gwas=$(echo DEPR06 COLL01 BODY03 HEIG03 DIAB05 COAD01 CROH01 RHEU01)
weights=$(cat ${TWAS_rep}/snp_weight_list.txt)

for i in $(seq 1 8);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  
  echo "predictors group" > /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/UKBB.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs.EUR-PRSs.pt_clump.predictor_groups

  for weight in ${weights}; do
    echo ${UKBB_output}/GeRS_for_comparison/1KG_ref/EUR/${weight}/UKBB.w_hm3.EUR.${weight}.${gwas_i}.fiprofile GeRS >> /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/UKBB.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs.EUR-PRSs.pt_clump.predictor_groups
  done

    echo ${UKBB_output}/PRS_for_comparison/1KG_ref/pt_clump/${gwas_i}/UKBB.subset.w_hm3.${gwas_i}.profiles PRS >> /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/UKBB.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs.EUR-PRSs.pt_clump.predictor_groups
done

# Run for no mhc clump rheumarth
echo "predictors group" > /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/RheuArth/Association_withPRS_and_GeRSs/UKBB.w_hm3.AllTissue.RHEU01.noMHCClump.EUR-GeRSs.EUR-PRSs.pt_clump.predictor_groups

for weight in ${weights}; do
  echo ${UKBB_output}/GeRS_for_comparison/1KG_ref/EUR/${weight}/UKBB.w_hm3.EUR.${weight}.RHEU01.fiprofile GeRS >> /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/RheuArth/Association_withPRS_and_GeRSs/UKBB.w_hm3.AllTissue.RHEU01.noMHCClump.EUR-GeRSs.EUR-PRSs.pt_clump.predictor_groups
done

echo ${UKBB_output}/PRS_for_comparison/1KG_ref/pt_clump/RHEU01.noMHCClump/UKBB.subset.w_hm3.RHEU01.noMHCClump.profiles PRS >> /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/RheuArth/Association_withPRS_and_GeRSs/UKBB.w_hm3.AllTissue.RHEU01.noMHCClump.EUR-GeRSs.EUR-PRSs.pt_clump.predictor_groups

# Derive and evaluate models
pheno=$(echo Depression Intelligence BMI Height T2D CAD IBD RheuArth RheuArth)
gwas=$(echo DEPR06 COLL01 BODY03 HEIG03 DIAB05 COAD01 CROH01 RHEU01 RHEU01.noMHCClump)
prev=$(echo 0.15 NA NA NA 0.05 0.03 0.013 0.00164 0.005 0.005)

# 1KG reference
for i in $(seq 1 9);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  pheno_file_i=$(echo ${pheno_file} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  prev_i=$(echo ${prev} | cut -f ${i} -d ' ')

sbatch --mem 10G -n 4 -p brc,shared /users/k1806347/brc_scratch/Software/Rscript.sh /users/k1806347/brc_scratch/Software/MyGit/GenoPred/Scripts/Model_builder/Model_builder_V2_nested.R \
    --pheno ${UKBB_output}/Phenotype/PRS_comp_subset/UKBB.${pheno_i}.txt \
    --keep /users/k1806347/brc_scratch/Analyses/PRS_comparison/UKBB_outcomes_for_prediction/ukb18177_glanville_post_qc_id_list.UpdateIDs.fam \
    --out /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/UKBB.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs.EUR-PRSs.pt_clump \
    --n_core 4 \
    --compare_predictors F \
    --assoc T \
    --outcome_pop_prev ${prev_i} \
    --predictors /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/UKBB.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs.EUR-PRSs.pt_clump.predictor_groups
done

GeRS PP4 + PRS

##############################
# Evaluating predictive utility of GeRS and PRS individually and in combination
##############################
. /users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config

# Create a file listing the predictors files
pheno=$(echo Depression Intelligence BMI Height T2D CAD IBD RheuArth)
gwas=$(echo DEPR06 COLL01 BODY03 HEIG03 DIAB05 COAD01 CROH01 RHEU01)
weights=$(cat ${TWAS_rep}/snp_weight_list.txt)

for i in $(seq 1 8);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  
  echo "predictors group" > /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/UKBB.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs_PP4.EUR-PRSs.pt_clump.predictor_groups

  for weight in ${weights}; do
    echo ${UKBB_output}/GeRS_for_comparison/1KG_ref_withCOLOC/EUR/${weight}/UKBB.w_hm3.EUR.${weight}.${gwas_i}.fiprofile GeRS >> /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/UKBB.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs_PP4.EUR-PRSs.pt_clump.predictor_groups
  done

    echo ${UKBB_output}/PRS_for_comparison/1KG_ref/pt_clump/${gwas_i}/UKBB.subset.w_hm3.${gwas_i}.profiles PRS >> /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/UKBB.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs_PP4.EUR-PRSs.pt_clump.predictor_groups
done

# Derive and evaluate models
pheno=$(echo Depression Intelligence BMI Height T2D CAD IBD RheuArth)
gwas=$(echo DEPR06 COLL01 BODY03 HEIG03 DIAB05 COAD01 CROH01 RHEU01)
prev=$(echo 0.15 NA NA NA 0.05 0.03 0.013 0.00164 0.005)

# 1KG reference
for i in $(seq 1 8);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  pheno_file_i=$(echo ${pheno_file} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  prev_i=$(echo ${prev} | cut -f ${i} -d ' ')

sbatch --mem 10G -n 4 -p brc,shared /users/k1806347/brc_scratch/Software/Rscript.sh /users/k1806347/brc_scratch/Software/MyGit/GenoPred/Scripts/Model_builder/Model_builder_V2_nested.R \
    --pheno ${UKBB_output}/Phenotype/PRS_comp_subset/UKBB.${pheno_i}.txt \
    --keep /users/k1806347/brc_scratch/Analyses/PRS_comparison/UKBB_outcomes_for_prediction/ukb18177_glanville_post_qc_id_list.UpdateIDs.fam \
    --out /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/UKBB.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs_PP4.EUR-PRSs.pt_clump \
    --n_core 4 \
    --compare_predictors F \
    --assoc T \
    --outcome_pop_prev ${prev_i} \
    --predictors /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/UKBB.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs_PP4.EUR-PRSs.pt_clump.predictor_groups
done

GeRS TissueSpecific + PRS

##############################
# Evaluating predictive utility of GeRS and PRS individually and in combination
##############################
. /users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config

# Create a file listing the predictors files
pheno=$(echo Depression Intelligence BMI Height T2D CAD IBD RheuArth)
gwas=$(echo DEPR06 COLL01 BODY03 HEIG03 DIAB05 COAD01 CROH01 RHEU01)
weights=$(cat ${TWAS_rep}/snp_weight_list.txt)

for i in $(seq 1 8);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  
  echo "predictors group" > /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/UKBB.w_hm3.AllTissue.TissueSpecific.${gwas_i}.EUR-GeRSs.EUR-PRSs.pt_clump.predictor_groups

  for weight in ${weights}; do
    echo ${UKBB_output}/GeRS_for_comparison/1KG_ref/EUR/${weight}/UKBB.w_hm3.EUR.TissueSpecific.${weight}.${gwas_i}.fiprofile GeRS >> /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/UKBB.w_hm3.AllTissue.TissueSpecific.${gwas_i}.EUR-GeRSs.EUR-PRSs.pt_clump.predictor_groups
  done

    echo ${UKBB_output}/PRS_for_comparison/1KG_ref/pt_clump/${gwas_i}/UKBB.subset.w_hm3.${gwas_i}.profiles PRS >> /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/UKBB.w_hm3.AllTissue.TissueSpecific.${gwas_i}.EUR-GeRSs.EUR-PRSs.pt_clump.predictor_groups
done

# Derive and evaluate models
pheno=$(echo Depression Intelligence BMI Height T2D CAD IBD RheuArth)
gwas=$(echo DEPR06 COLL01 BODY03 HEIG03 DIAB05 COAD01 CROH01 RHEU01)
prev=$(echo 0.15 NA NA NA 0.05 0.03 0.013 0.00164 0.005)

# 1KG reference
for i in $(seq 1 8);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  pheno_file_i=$(echo ${pheno_file} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  prev_i=$(echo ${prev} | cut -f ${i} -d ' ')

sbatch --mem 10G -n 4 -p brc,shared /users/k1806347/brc_scratch/Software/Rscript.sh /users/k1806347/brc_scratch/Software/MyGit/GenoPred/Scripts/Model_builder/Model_builder_V2_nested.R \
    --pheno ${UKBB_output}/Phenotype/PRS_comp_subset/UKBB.${pheno_i}.txt \
    --keep /users/k1806347/brc_scratch/Analyses/PRS_comparison/UKBB_outcomes_for_prediction/ukb18177_glanville_post_qc_id_list.UpdateIDs.fam \
    --out /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/UKBB.w_hm3.AllTissue.TissueSpecific.${gwas_i}.EUR-GeRSs.EUR-PRSs.pt_clump \
    --n_core 4 \
    --compare_predictors F \
    --assoc T \
    --outcome_pop_prev ${prev_i} \
    --predictors /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/UKBB.w_hm3.AllTissue.TissueSpecific.${gwas_i}.EUR-GeRSs.EUR-PRSs.pt_clump.predictor_groups
done

GeRS + PRScs

##############################
# Evaluating predictive utility of GeRS and PRScs individually and in combination
##############################
. /users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config

# Make required directories
for pheno_i in $(echo Depression Intelligence BMI Height T2D CAD IBD RheuArth);do
mkdir -p /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs
done

# Create a file listing the predictors files
pheno=$(echo Depression Intelligence BMI Height T2D CAD IBD RheuArth)
gwas=$(echo DEPR06 COLL01 BODY03 HEIG03 DIAB05 COAD01 CROH01 RHEU01)
weights=$(cat ${TWAS_rep}/snp_weight_list.txt)

for i in $(seq 1 8);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  
  echo "predictors group" > /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/UKBB.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs.EUR-PRSs.PRScs.predictor_groups

  for weight in ${weights}; do
    echo ${UKBB_output}/GeRS_for_comparison/1KG_ref/EUR/${weight}/UKBB.w_hm3.EUR.${weight}.${gwas_i}.fiprofile GeRS >> /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/UKBB.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs.EUR-PRSs.PRScs.predictor_groups
  done

    echo ${UKBB_output}/PRS_for_comparison/1KG_ref/PRScs/${gwas_i}/UKBB.subset.w_hm3.${gwas_i}.PRScs_profiles PRS >> /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/UKBB.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs.EUR-PRSs.PRScs.predictor_groups
done

# Derive and evaluate models
pheno=$(echo Depression Intelligence BMI Height T2D CAD IBD RheuArth)
gwas=$(echo DEPR06 COLL01 BODY03 HEIG03 DIAB05 COAD01 CROH01 RHEU01)
prev=$(echo 0.15 NA NA NA 0.05 0.03 0.013 0.00164 0.005)

# 1KG reference
for i in $(seq 1 8);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  pheno_file_i=$(echo ${pheno_file} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  prev_i=$(echo ${prev} | cut -f ${i} -d ' ')

sbatch --mem 10G -n 4 -p brc,shared /users/k1806347/brc_scratch/Software/Rscript.sh /users/k1806347/brc_scratch/Software/MyGit/GenoPred/Scripts/Model_builder/Model_builder_V2_nested.R \
    --pheno ${UKBB_output}/Phenotype/PRS_comp_subset/UKBB.${pheno_i}.txt \
    --keep /users/k1806347/brc_scratch/Analyses/PRS_comparison/UKBB_outcomes_for_prediction/ukb18177_glanville_post_qc_id_list.UpdateIDs.fam \
    --out /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/UKBB.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs.EUR-PRSs.PRScs \
    --n_core 4 \
    --compare_predictors F \
    --assoc T \
    --outcome_pop_prev ${prev_i} \
    --predictors /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/UKBB.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs.EUR-PRSs.PRScs.predictor_groups
done

Functionally agnostic polygenic score

##############################
# Evaluating predictive utility of pT + clump PRSs across multiple pTs individually and in combination
##############################
. /users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config

# Make required directories
for pheno_i in $(echo Depression Intelligence BMI Height T2D CAD IBD MultiScler RheuArth);do
mkdir -p /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withPRSs
done

# Create a file listing the predictors files
pheno=$(echo Depression Intelligence BMI Height T2D CAD IBD MultiScler RheuArth)
gwas=$(echo DEPR06 COLL01 BODY03 HEIG03 DIAB05 COAD01 CROH01 SCLE02 RHEU01)

for i in $(seq 1 9);do
pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')

cat > /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withPRSs/UKBB.w_hm3.${gwas_i}.EUR-PRSs.predictor_groups <<EOF
predictors 
${UKBB_output}/PRS_for_comparison/1KG_ref/pt_clump/${gwas_i}/UKBB.subset.w_hm3.${gwas_i}.profiles
EOF

done

# Derive and evaluate models
pheno=$(echo Depression Intelligence BMI Height T2D CAD IBD MultiScler RheuArth)
gwas=$(echo DEPR06 COLL01 BODY03 HEIG03 DIAB05 COAD01 CROH01 SCLE02 RHEU01)
prev=$(echo 0.15 NA NA NA 0.05 0.03 0.013 0.00164 0.005)

# pT + clump (sparse)
for i in $(seq 1 9);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  pheno_file_i=$(echo ${pheno_file} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  prev_i=$(echo ${prev} | cut -f ${i} -d ' ')

sbatch --mem 10G -n 2 -p brc,shared /users/k1806347/brc_scratch/Software/Rscript.sh /users/k1806347/brc_scratch/Software/MyGit/GenoPred/Scripts/Model_builder/Model_builder_V2_nested.R \
    --pheno ${UKBB_output}/Phenotype/PRS_comp_subset/UKBB.${pheno_i}.txt \
    --keep /users/k1806347/brc_scratch/Analyses/PRS_comparison/UKBB_outcomes_for_prediction/ukb18177_glanville_post_qc_id_list.UpdateIDs.fam \
    --out /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withPRSs/UKBB.w_hm3.${gwas_i}.EUR-PRSs \
    --n_core 2 \
    --compare_predictors T \
    --assoc T \
    --outcome_pop_prev ${prev_i} \
    --predictors /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withPRSs/UKBB.w_hm3.${gwas_i}.EUR-PRSs.predictor_groups
done

TWAS gene stratified polygenic score

. /users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config

# Make required directories
for pheno_i in $(echo Depression Intelligence BMI Height T2D CAD IBD RheuArth);do
mkdir -p /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withPRSs
done

# Create a file listing the predictors files
pheno=$(echo Depression Intelligence BMI Height T2D CAD IBD RheuArth)
gwas=$(echo DEPR06 COLL01 BODY03 HEIG03 DIAB05 COAD01 CROH01 RHEU01)
weights=$(cat ${TWAS_rep}/snp_weight_list.txt)

for i in $(seq 1 8);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  
  echo "predictors group" > /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withPRSs/UKBB.w_hm3.${gwas_i}.EUR-PRSs-TWAS_gene_stratified.predictor_groups

  for weight in ${weights}; do
    echo ${UKBB_output}/GeRS_for_comparison/1KG_ref/EUR/${weight}/UKBB.w_hm3.EUR.${weight}.${gwas_i}.fiprofile GeRS >> /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withPRSs/UKBB.w_hm3.${gwas_i}.EUR-PRSs-TWAS_gene_stratified.predictor_groups
  done

    echo ${UKBB_output}/PRS_for_comparison/1KG_ref/pt_clump_stratified_TWAS_Gene/${gwas_i}/UKBB.subset.w_hm3.${gwas_i}.profiles strat_PRS >> /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withPRSs/UKBB.w_hm3.${gwas_i}.EUR-PRSs-TWAS_gene_stratified.predictor_groups
done

# Derive and evaluate models
pheno=$(echo Depression Intelligence BMI Height T2D CAD IBD RheuArth)
gwas=$(echo DEPR06 COLL01 BODY03 HEIG03 DIAB05 COAD01 CROH01 RHEU01)
prev=$(echo 0.15 NA NA NA 0.05 0.03 0.013 0.00164 0.005)

# 1KG reference
for i in $(seq 1 8);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  pheno_file_i=$(echo ${pheno_file} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  prev_i=$(echo ${prev} | cut -f ${i} -d ' ')

sbatch --mem 10G -n 2 -p brc,shared /users/k1806347/brc_scratch/Software/Rscript.sh /users/k1806347/brc_scratch/Software/MyGit/GenoPred/Scripts/Model_builder/Model_builder_V2_nested.R \
    --pheno ${UKBB_output}/Phenotype/PRS_comp_subset/UKBB.${pheno_i}.txt \
    --keep /users/k1806347/brc_scratch/Analyses/PRS_comparison/UKBB_outcomes_for_prediction/ukb18177_glanville_post_qc_id_list.UpdateIDs.fam \
    --out /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withPRSs/UKBB.w_hm3.${gwas_i}.EUR-PRSs-TWAS_gene_stratified \
    --n_core 2 \
    --compare_predictors F \
    --assoc F \
    --outcome_pop_prev ${prev_i} \
    --predictors /users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/${pheno_i}/Association_withPRSs/UKBB.w_hm3.${gwas_i}.EUR-PRSs-TWAS_gene_stratified.predictor_groups
done


3.9.2 TEDS

Single-pT vs. Multi-pT

##############################
# Evaluating predictive utility of GeRS across multiple pTs individually and in combination
##############################
. /users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config

# Make required directories
for pheno_i in $(echo Height21 BMI21 GCSE ADHD);do
mkdir -p /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withGeRSs
done

# Create a file listing the predictors files
pheno=$(echo Height21 BMI21 GCSE ADHD)
gwas=$(echo HEIG03 BODY11 EDUC03 ADHD04)
weights=$(cat ${TWAS_rep}/snp_weight_list.txt)

for i in $(seq 1 4);do
for weight in ${weights};do
pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')

cat > /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/TEDS.w_hm3.${weight}.${gwas_i}.EUR-GeRSs.predictor_groups <<EOF
predictors 
${TEDS_output_dir}/FunctionallyInformedPolygenicScores/EUR/${weight}/TEDS.w_hm3.EUR.${weight}.${gwas_i}.fiprofile
EOF

done
done

# Derive and evaluate models
pheno=$(echo Height21 BMI21 GCSE ADHD)
gwas=$(echo HEIG03 BODY11 EDUC03 ADHD04)
prev=$(echo NA NA NA NA)
weights=$(cat ${TWAS_rep}/snp_weight_list.txt)

# 1KG reference
for i in $(seq 1 4);do
for weight in ${weights};do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  prev_i=$(echo ${prev} | cut -f ${i} -d ' ')

sbatch --mem 10G -n 2 -p brc,shared /users/k1806347/brc_scratch/Software/Rscript.sh /users/k1806347/brc_scratch/Software/MyGit/GenoPred/Scripts/Model_builder/Model_builder_V2_nested.R \
    --pheno ${TEDS_output_dir}/Phenotypic/Derived_outcomes/TEDS_${pheno_i}.txt \
      --keep /users/k1806347/brc_scratch/Data/TEDS/Projected_PCs/Ancestry_idenitfier/TEDS.w_hm3.AllAncestry.EUR.keep \
    --out /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/TEDS.w_hm3.${weight}.${gwas_i}.EUR-GeRSs \
    --n_core 2 \
    --compare_predictors T \
    --assoc T \
    --outcome_pop_prev ${prev_i} \
    --predictors /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/TEDS.w_hm3.${weight}.${gwas_i}.EUR-GeRSs.predictor_groups
done
sleep 60
done

Single-tissue vs. Multi-tissue

##############################
# Evaluating predictive utility of GeRS across multiple tissues individually and in combination
##############################
. /users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config

# Create a file listing the predictors files
pheno=$(echo Height21 BMI21 GCSE ADHD)
gwas=$(echo HEIG03 BODY11 EDUC03 ADHD04)
weights=$(cat ${TWAS_rep}/snp_weight_list.txt)

for i in $(seq 1 4);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  
  echo "predictors group" > /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/TEDS.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs.predictor_groups

  for weight in ${weights}; do
    echo ${TEDS_output_dir}/FunctionallyInformedPolygenicScores/EUR/${weight}/TEDS.w_hm3.EUR.${weight}.${gwas_i}.fiprofile ${weight} >> /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/TEDS.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs.predictor_groups
  done
  
done

# Derive and evaluate models
pheno=$(echo Height21 BMI21 GCSE ADHD)
gwas=$(echo HEIG03 BODY11 EDUC03 ADHD04)
prev=$(echo NA NA NA NA)

# 1KG reference
for i in $(seq 1 4);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  prev_i=$(echo ${prev} | cut -f ${i} -d ' ')

sbatch --mem 10G -n 2 -p brc,shared /users/k1806347/brc_scratch/Software/Rscript.sh /users/k1806347/brc_scratch/Software/MyGit/GenoPred/Scripts/Model_builder/Model_builder_V2_nested.R \
    --pheno ${TEDS_output_dir}/Phenotypic/Derived_outcomes/TEDS_${pheno_i}.txt \
      --keep /users/k1806347/brc_scratch/Data/TEDS/Projected_PCs/Ancestry_idenitfier/TEDS.w_hm3.AllAncestry.EUR.keep \
    --out /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/TEDS.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs \
    --n_core 2 \
    --compare_predictors F \
    --assoc T \
    --outcome_pop_prev ${prev_i} \
    --predictors /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/TEDS.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs.predictor_groups
done

Multi-tissue per pT

##############################
# Evaluating predictive utility of GeRS across multiple tissues for each pT seperately
##############################
. /users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config

# Split the GeRS files by pT
module add apps/R
R

source('/users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config')

gwas<-c('HEIG03','BODY11','EDUC03','ADHD04')

weights<-read.table('~/brc_scratch/Data/TWAS_sumstats/FUSION/snp_weight_list.txt', stringsAsFactors=F)$V1

library(data.table)

for(gwas_i in gwas){
print(gwas_i)
  for(weights_i in weights){

    GeRS<-fread(paste0(TEDS_output_dir,'/FunctionallyInformedPolygenicScores/EUR/',weights_i,'/TEDS.w_hm3.EUR.',weights_i,'.',gwas_i,'.fiprofile'))
  
    GeRS_pT<-gsub('.*_','',names(GeRS)[-1:-2])
    
    for(pT_i in GeRS_pT){
      write.table(GeRS[,c('FID','IID',paste0(gwas_i,'_',pT_i)), with=F], paste0(TEDS_output_dir,'/FunctionallyInformedPolygenicScores/EUR/',weights_i,'/TEDS.w_hm3.EUR.',weights_i,'.',gwas_i,'.pT_',pT_i,'.fiprofile'),col.names=T, row.names=F, quote=F)
    }
  }
}

q()
n

# Create a file listing the predictors files
pheno=$(echo Height21 BMI21 GCSE ADHD)
gwas=$(echo HEIG03 BODY11 EDUC03 ADHD04)
weights=$(cat ${TWAS_rep}/snp_weight_list.txt)
pT=$(echo 1e-06 1e-05 1e-04 0.001 0.01 0.05 0.1 0.5 1)

for i in $(seq 1 4);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  
  echo "predictors group" > /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/TEDS.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs.per_PT.predictor_groups
  
  for pT_i in ${pT};do
    for weight in ${weights}; do
        if [ -f ${TEDS_output_dir}/FunctionallyInformedPolygenicScores/EUR/${weight}/TEDS.w_hm3.EUR.${weight}.${gwas_i}.pT_${pT_i}.fiprofile ]; then

        echo ${TEDS_output_dir}/FunctionallyInformedPolygenicScores/EUR/${weight}/TEDS.w_hm3.EUR.${weight}.${gwas_i}.pT_${pT_i}.fiprofile ${pT_i} >> /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/TEDS.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs.per_PT.predictor_groups
      
        fi
    done
  done
  
done

# Derive and evaluate models
pheno=$(echo Height21 BMI21 GCSE ADHD)
gwas=$(echo HEIG03 BODY11 EDUC03 ADHD04)
prev=$(echo NA NA NA NA)

# 1KG reference
for i in $(seq 1 4);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  pheno_file_i=$(echo ${pheno_file} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  prev_i=$(echo ${prev} | cut -f ${i} -d ' ')

sbatch --mem 10G -n 2 -p brc,shared /users/k1806347/brc_scratch/Software/Rscript.sh /users/k1806347/brc_scratch/Software/MyGit/GenoPred/Scripts/Model_builder/Model_builder_V2_nested.R \
    --pheno ${TEDS_output_dir}/Phenotypic/Derived_outcomes/TEDS_${pheno_i}.txt \
      --keep /users/k1806347/brc_scratch/Data/TEDS/Projected_PCs/Ancestry_idenitfier/TEDS.w_hm3.AllAncestry.EUR.keep \
    --out /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/TEDS.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs.per_PT \
    --n_core 2 \
    --compare_predictors F \
    --assoc T \
    --outcome_pop_prev ${prev_i} \
    --predictors /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/TEDS.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs.per_PT.predictor_groups
    
done

Single-tissue vs. Multi-tissue (PP4+clump)

##############################
# Evaluating predictive utility of GeRS across multiple tissues individually and in combination
##############################
. /users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config

# Create a file listing the predictors files
pheno=$(echo Height21 BMI21 GCSE ADHD)
gwas=$(echo HEIG03 BODY11 EDUC03 ADHD04)
weights=$(cat ${TWAS_rep}/snp_weight_list.txt)

for i in $(seq 1 4);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  
  echo "predictors group" > /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/TEDS.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs_PP4.predictor_groups

  for weight in ${weights}; do
    echo ${TEDS_output_dir}/FunctionallyInformedPolygenicScores_withCOLOC/EUR/${weight}/TEDS.w_hm3.EUR.${weight}.${gwas_i}.fiprofile ${weight} >> /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/TEDS.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs_PP4.predictor_groups
  done
  
done

# Derive and evaluate models
pheno=$(echo Height21 BMI21 GCSE ADHD)
gwas=$(echo HEIG03 BODY11 EDUC03 ADHD04)
prev=$(echo NA NA NA NA)

# 1KG reference
for i in $(seq 1 4);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  prev_i=$(echo ${prev} | cut -f ${i} -d ' ')

sbatch --mem 10G -n 2 -p brc,shared /users/k1806347/brc_scratch/Software/Rscript.sh /users/k1806347/brc_scratch/Software/MyGit/GenoPred/Scripts/Model_builder/Model_builder_V2_nested.R \
    --pheno ${TEDS_output_dir}/Phenotypic/Derived_outcomes/TEDS_${pheno_i}.txt \
      --keep /users/k1806347/brc_scratch/Data/TEDS/Projected_PCs/Ancestry_idenitfier/TEDS.w_hm3.AllAncestry.EUR.keep \
    --out /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/TEDS.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs_PP4 \
    --n_core 2 \
    --compare_predictors F \
    --assoc T \
    --outcome_pop_prev ${prev_i} \
    --predictors /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/TEDS.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs_PP4.predictor_groups
done

Single-tissue vs. Multi-tissue (Tissue Specific)

##############################
# Evaluating predictive utility of GeRS across multiple tissues individually and in combination
##############################
. /users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config

# Create a file listing the predictors files
pheno=$(echo Height21 BMI21 GCSE ADHD)
gwas=$(echo HEIG03 BODY11 EDUC03 ADHD04)
weights=$(cat ${TWAS_rep}/snp_weight_list.txt)

for i in $(seq 1 4);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  
  echo "predictors group" > /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/TEDS.w_hm3.AllTissue.TissueSpecific.${gwas_i}.EUR-GeRSs.predictor_groups

  for weight in ${weights}; do
    echo ${TEDS_output_dir}/FunctionallyInformedPolygenicScores/EUR/${weight}/TEDS.w_hm3.EUR.TissueSpecific.${weight}.${gwas_i}.fiprofile ${weight} >> /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/TEDS.w_hm3.AllTissue.TissueSpecific.${gwas_i}.EUR-GeRSs.predictor_groups
  done
  
done

# Derive and evaluate models
pheno=$(echo Height21 BMI21 GCSE ADHD)
gwas=$(echo HEIG03 BODY11 EDUC03 ADHD04)
prev=$(echo NA NA NA NA)

# 1KG reference
for i in $(seq 1 4);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  prev_i=$(echo ${prev} | cut -f ${i} -d ' ')

sbatch --mem 10G -n 2 -p brc,shared /users/k1806347/brc_scratch/Software/Rscript.sh /users/k1806347/brc_scratch/Software/MyGit/GenoPred/Scripts/Model_builder/Model_builder_V2_nested.R \
    --pheno ${TEDS_output_dir}/Phenotypic/Derived_outcomes/TEDS_${pheno_i}.txt \
      --keep /users/k1806347/brc_scratch/Data/TEDS/Projected_PCs/Ancestry_idenitfier/TEDS.w_hm3.AllAncestry.EUR.keep \
    --out /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/TEDS.w_hm3.AllTissue.TissueSpecific.${gwas_i}.EUR-GeRSs \
    --n_core 2 \
    --compare_predictors F \
    --assoc T \
    --outcome_pop_prev ${prev_i} \
    --predictors /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/TEDS.w_hm3.AllTissue.TissueSpecific.${gwas_i}.EUR-GeRSs.predictor_groups
done

Single-tissue vs. Multi-tissue (colocalised)

##############################
# Evaluating predictive utility of GeRS across multiple tissues individually and in combination
##############################
. /users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config

# Create a file listing the predictors files
pheno=$(echo Height21 BMI21 GCSE ADHD)
gwas=$(echo HEIG03 BODY11 EDUC03 ADHD04)
weights=$(cat ${TWAS_rep}/snp_weight_list.txt)

for i in $(seq 1 4);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  
  echo "predictors group" > /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/TEDS.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs_pT_withColoc.predictor_groups

  for weight in ${weights}; do
    echo ${TEDS_output_dir}/FunctionallyInformedPolygenicScores_pT_withColoc/EUR/${weight}/TEDS.w_hm3.EUR.${weight}.${gwas_i}.fiprofile ${weight} >> /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/TEDS.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs_pT_withColoc.predictor_groups
  done
  
done

# Derive and evaluate models
pheno=$(echo Height21 BMI21 GCSE ADHD)
gwas=$(echo HEIG03 BODY11 EDUC03 ADHD04)
prev=$(echo NA NA NA NA)

# 1KG reference
for i in $(seq 1 4);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  prev_i=$(echo ${prev} | cut -f ${i} -d ' ')

sbatch --mem 10G -n 2 -p brc,shared /users/k1806347/brc_scratch/Software/Rscript.sh /users/k1806347/brc_scratch/Software/MyGit/GenoPred/Scripts/Model_builder/Model_builder_V2_nested.R \
    --pheno ${TEDS_output_dir}/Phenotypic/Derived_outcomes/TEDS_${pheno_i}.txt \
      --keep /users/k1806347/brc_scratch/Data/TEDS/Projected_PCs/Ancestry_idenitfier/TEDS.w_hm3.AllAncestry.EUR.keep \
    --out /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/TEDS.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs_pT_withColoc \
    --n_core 2 \
    --compare_predictors F \
    --assoc T \
    --outcome_pop_prev ${prev_i} \
    --predictors /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/TEDS.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs_pT_withColoc.predictor_groups
done

Multi-tissue per pT (colocalised)

##############################
# Evaluating predictive utility of GeRS across multiple tissues for each pT seperately
##############################
. /users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config

# Split the GeRS files by pT
module add apps/R
R

source('/users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config')

gwas<-c('HEIG03','BODY11','EDUC03','ADHD04')

weights<-read.table('~/brc_scratch/Data/TWAS_sumstats/FUSION/snp_weight_list.txt', stringsAsFactors=F)$V1

library(data.table)

for(gwas_i in gwas){
print(gwas_i)
  for(weights_i in weights){
    if(file.exists(paste0(TEDS_output_dir,'/FunctionallyInformedPolygenicScores_pT_withColoc/EUR/',weights_i,'/TEDS.w_hm3.EUR.',weights_i,'.',gwas_i,'.fiprofile')) == T){
      GeRS<-fread(paste0(TEDS_output_dir,'/FunctionallyInformedPolygenicScores_pT_withColoc/EUR/',weights_i,'/TEDS.w_hm3.EUR.',weights_i,'.',gwas_i,'.fiprofile'))
    
      GeRS_pT<-gsub('.*_','',names(GeRS)[-1:-2])
      
      for(pT_i in GeRS_pT){
        write.table(GeRS[,c('FID','IID',paste0(gwas_i,'_',pT_i)), with=F], paste0(TEDS_output_dir,'/FunctionallyInformedPolygenicScores_pT_withColoc/EUR/',weights_i,'/TEDS.w_hm3.EUR.',weights_i,'.',gwas_i,'.pT_',pT_i,'.fiprofile'),col.names=T, row.names=F, quote=F)
      }
    }
  }
}

q()
n

# Create a file listing the predictors files
pheno=$(echo Height21 BMI21 GCSE ADHD)
gwas=$(echo HEIG03 BODY11 EDUC03 ADHD04)
weights=$(cat ${TWAS_rep}/snp_weight_list.txt)
pT=$(echo 1e-06 1e-05 1e-04 0.001 0.01 0.05 0.1 0.5 1)

for i in $(seq 1 4);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  
  echo "predictors group" > /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/TEDS.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs_pT_withColoc.per_PT.predictor_groups
  
  for pT_i in ${pT};do
    for weight in ${weights}; do
        if [ -f ${TEDS_output_dir}/FunctionallyInformedPolygenicScores_pT_withColoc/EUR/${weight}/TEDS.w_hm3.EUR.${weight}.${gwas_i}.pT_${pT_i}.fiprofile ]; then

        echo ${TEDS_output_dir}/FunctionallyInformedPolygenicScores_pT_withColoc/EUR/${weight}/TEDS.w_hm3.EUR.${weight}.${gwas_i}.pT_${pT_i}.fiprofile ${pT_i} >> /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/TEDS.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs_pT_withColoc.per_PT.predictor_groups
      
        fi
    done
  done
  
done

# Derive and evaluate models
pheno=$(echo Height21 BMI21 GCSE ADHD)
gwas=$(echo HEIG03 BODY11 EDUC03 ADHD04)
prev=$(echo NA NA NA NA)

# 1KG reference
for i in $(seq 1 4);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  pheno_file_i=$(echo ${pheno_file} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  prev_i=$(echo ${prev} | cut -f ${i} -d ' ')

sbatch --mem 10G -n 2 -p brc,shared /users/k1806347/brc_scratch/Software/Rscript.sh /users/k1806347/brc_scratch/Software/MyGit/GenoPred/Scripts/Model_builder/Model_builder_V2_nested.R \
    --pheno ${TEDS_output_dir}/Phenotypic/Derived_outcomes/TEDS_${pheno_i}.txt \
      --keep /users/k1806347/brc_scratch/Data/TEDS/Projected_PCs/Ancestry_idenitfier/TEDS.w_hm3.AllAncestry.EUR.keep \
    --out /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/TEDS.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs_pT_withColoc.per_PT \
    --n_core 2 \
    --compare_predictors F \
    --assoc T \
    --outcome_pop_prev ${prev_i} \
    --predictors /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withGeRSs/TEDS.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs_pT_withColoc.per_PT.predictor_groups
    
done

GeRS + PRS

##############################
# Evaluating predictive utility of GeRS and PRS individually and in combination
##############################
. /users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config

# Make required directories
for pheno_i in $(echo Height21 BMI21 GCSE ADHD);do
mkdir -p /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs
done

# Create a file listing the predictors files
pheno=$(echo Height21 BMI21 GCSE ADHD)
gwas=$(echo HEIG03 BODY11 EDUC03 ADHD04)
weights=$(cat ${TWAS_rep}/snp_weight_list.txt)

for i in $(seq 1 4);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  
  echo "predictors group" > /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/TEDS.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs.EUR-PRSs.pt_clump.predictor_groups

  for weight in ${weights}; do
    echo ${TEDS_output_dir}/FunctionallyInformedPolygenicScores/EUR/${weight}/TEDS.w_hm3.EUR.${weight}.${gwas_i}.fiprofile GeRS >> /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/TEDS.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs.EUR-PRSs.pt_clump.predictor_groups
  done

    echo ${TEDS_output_dir}/PolygenicScores/EUR/${gwas_i}/TEDS.w_hm3.${gwas_i}.EUR.profiles PRS >> /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/TEDS.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs.EUR-PRSs.pt_clump.predictor_groups
done

# Derive and evaluate models
pheno=$(echo Height21 BMI21 GCSE ADHD)
gwas=$(echo HEIG03 BODY11 EDUC03 ADHD04)
prev=$(echo NA NA NA NA)

# 1KG reference
for i in $(seq 1 4);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  prev_i=$(echo ${prev} | cut -f ${i} -d ' ')

sbatch --mem 10G -n 2 -p brc,shared /users/k1806347/brc_scratch/Software/Rscript.sh /users/k1806347/brc_scratch/Software/MyGit/GenoPred/Scripts/Model_builder/Model_builder_V2_nested.R \
    --pheno ${TEDS_output_dir}/Phenotypic/Derived_outcomes/TEDS_${pheno_i}.txt \
      --keep /users/k1806347/brc_scratch/Data/TEDS/Projected_PCs/Ancestry_idenitfier/TEDS.w_hm3.AllAncestry.EUR.keep \
    --out /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/TEDS.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs.EUR-PRSs.pt_clump \
    --n_core 2 \
    --compare_predictors F \
    --assoc T \
    --outcome_pop_prev ${prev_i} \
    --predictors /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/TEDS.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs.EUR-PRSs.pt_clump.predictor_groups
done

GeRS + PRS (PP4+clump)

##############################
# Evaluating predictive utility of GeRS and PRS individually and in combination
##############################
. /users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config

# Make required directories
for pheno_i in $(echo Height21 BMI21 GCSE ADHD);do
mkdir -p /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs
done

# Create a file listing the predictors files
pheno=$(echo Height21 BMI21 GCSE ADHD)
gwas=$(echo HEIG03 BODY11 EDUC03 ADHD04)
weights=$(cat ${TWAS_rep}/snp_weight_list.txt)

for i in $(seq 1 4);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  
  echo "predictors group" > /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/TEDS.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs_PP4.EUR-PRSs.pt_clump.predictor_groups

  for weight in ${weights}; do
    echo ${TEDS_output_dir}/FunctionallyInformedPolygenicScores_withCOLOC/EUR/${weight}/TEDS.w_hm3.EUR.${weight}.${gwas_i}.fiprofile GeRS >> /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/TEDS.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs_PP4.EUR-PRSs.pt_clump.predictor_groups
  done

    echo ${TEDS_output_dir}/PolygenicScores/EUR/${gwas_i}/TEDS.w_hm3.${gwas_i}.EUR.profiles PRS >> /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/TEDS.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs_PP4.EUR-PRSs.pt_clump.predictor_groups
done

# Derive and evaluate models
pheno=$(echo Height21 BMI21 GCSE ADHD)
gwas=$(echo HEIG03 BODY11 EDUC03 ADHD04)
prev=$(echo NA NA NA NA)

# 1KG reference
for i in $(seq 1 4);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  prev_i=$(echo ${prev} | cut -f ${i} -d ' ')

sbatch --mem 10G -n 2 -p brc,shared /users/k1806347/brc_scratch/Software/Rscript.sh /users/k1806347/brc_scratch/Software/MyGit/GenoPred/Scripts/Model_builder/Model_builder_V2_nested.R \
    --pheno ${TEDS_output_dir}/Phenotypic/Derived_outcomes/TEDS_${pheno_i}.txt \
      --keep /users/k1806347/brc_scratch/Data/TEDS/Projected_PCs/Ancestry_idenitfier/TEDS.w_hm3.AllAncestry.EUR.keep \
    --out /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/TEDS.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs_PP4.EUR-PRSs.pt_clump \
    --n_core 2 \
    --compare_predictors F \
    --assoc T \
    --outcome_pop_prev ${prev_i} \
    --predictors /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/TEDS.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs_PP4.EUR-PRSs.pt_clump.predictor_groups
done

GeRS + PRS (Tissue Specific)

##############################
# Evaluating predictive utility of GeRS and PRS individually and in combination
##############################
. /users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config

# Make required directories
for pheno_i in $(echo Height21 BMI21 GCSE ADHD);do
mkdir -p /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs
done

# Create a file listing the predictors files
pheno=$(echo Height21 BMI21 GCSE ADHD)
gwas=$(echo HEIG03 BODY11 EDUC03 ADHD04)
weights=$(cat ${TWAS_rep}/snp_weight_list.txt)

for i in $(seq 1 4);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  
  echo "predictors group" > /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/TEDS.w_hm3.AllTissue.TissueSpecific.${gwas_i}.EUR-GeRSs.EUR-PRSs.pt_clump.predictor_groups

  for weight in ${weights}; do
    echo ${TEDS_output_dir}/FunctionallyInformedPolygenicScores/EUR/${weight}/TEDS.w_hm3.EUR.TissueSpecific.${weight}.${gwas_i}.fiprofile GeRS >> /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/TEDS.w_hm3.AllTissue.TissueSpecific.${gwas_i}.EUR-GeRSs.EUR-PRSs.pt_clump.predictor_groups
  done

    echo ${TEDS_output_dir}/PolygenicScores/EUR/${gwas_i}/TEDS.w_hm3.${gwas_i}.EUR.profiles PRS >> /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/TEDS.w_hm3.AllTissue.TissueSpecific.${gwas_i}.EUR-GeRSs.EUR-PRSs.pt_clump.predictor_groups
done

# Derive and evaluate models
pheno=$(echo Height21 BMI21 GCSE ADHD)
gwas=$(echo HEIG03 BODY11 EDUC03 ADHD04)
prev=$(echo NA NA NA NA)

# 1KG reference
for i in $(seq 1 4);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  prev_i=$(echo ${prev} | cut -f ${i} -d ' ')

sbatch --mem 10G -n 2 -p brc,shared /users/k1806347/brc_scratch/Software/Rscript.sh /users/k1806347/brc_scratch/Software/MyGit/GenoPred/Scripts/Model_builder/Model_builder_V2_nested.R \
    --pheno ${TEDS_output_dir}/Phenotypic/Derived_outcomes/TEDS_${pheno_i}.txt \
      --keep /users/k1806347/brc_scratch/Data/TEDS/Projected_PCs/Ancestry_idenitfier/TEDS.w_hm3.AllAncestry.EUR.keep \
    --out /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/TEDS.w_hm3.AllTissue.TissueSpecific.${gwas_i}.EUR-GeRSs.EUR-PRSs.pt_clump \
    --n_core 2 \
    --compare_predictors F \
    --assoc T \
    --outcome_pop_prev ${prev_i} \
    --predictors /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/TEDS.w_hm3.AllTissue.TissueSpecific.${gwas_i}.EUR-GeRSs.EUR-PRSs.pt_clump.predictor_groups
done

GeRS + PRScs

##############################
# Evaluating predictive utility of GeRS and PRS individually and in combination
##############################
. /users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config

# Make required directories
for pheno_i in $(echo Height21 BMI21 GCSE ADHD);do
mkdir -p /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs
done

# Create a file listing the predictors files
pheno=$(echo Height21 BMI21 GCSE ADHD)
gwas=$(echo HEIG03 BODY11 EDUC03 ADHD04)
weights=$(cat ${TWAS_rep}/snp_weight_list.txt)

for i in $(seq 1 4);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  
  echo "predictors group" > /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/TEDS.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs.EUR-PRSs.PRScs.predictor_groups

  for weight in ${weights}; do
    echo ${TEDS_output_dir}/FunctionallyInformedPolygenicScores/EUR/${weight}/TEDS.w_hm3.EUR.${weight}.${gwas_i}.fiprofile GeRS >> /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/TEDS.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs.EUR-PRSs.PRScs.predictor_groups
  done

    echo ${TEDS_output_dir}/PolygenicScores_PRScs/EUR/${gwas_i}/TEDS.w_hm3.${gwas_i}.EUR.PRScs_profiles PRS >> /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/TEDS.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs.EUR-PRSs.PRScs.predictor_groups
done

# Derive and evaluate models
pheno=$(echo Height21 BMI21 GCSE ADHD)
gwas=$(echo HEIG03 BODY11 EDUC03 ADHD04)
prev=$(echo NA NA NA NA)

# 1KG reference
for i in $(seq 1 4);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  prev_i=$(echo ${prev} | cut -f ${i} -d ' ')

sbatch --mem 10G -n 2 -p brc,shared /users/k1806347/brc_scratch/Software/Rscript.sh /users/k1806347/brc_scratch/Software/MyGit/GenoPred/Scripts/Model_builder/Model_builder_V2_nested.R \
    --pheno ${TEDS_output_dir}/Phenotypic/Derived_outcomes/TEDS_${pheno_i}.txt \
      --keep /users/k1806347/brc_scratch/Data/TEDS/Projected_PCs/Ancestry_idenitfier/TEDS.w_hm3.AllAncestry.EUR.keep \
    --out /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/TEDS.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs.EUR-PRSs.PRScs \
    --n_core 2 \
    --compare_predictors F \
    --assoc T \
    --outcome_pop_prev ${prev_i} \
    --predictors /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withPRS_and_GeRSs/TEDS.w_hm3.AllTissue.${gwas_i}.EUR-GeRSs.EUR-PRSs.PRScs.predictor_groups
done

pT + clump comparison

##############################
# Evaluating predictive utility of pT + clump PRSs across multiple pTs individually and in combination
##############################

# Make required directories
for pheno_i in $(echo Height21 BMI21 GCSE ADHD);do
mkdir -p /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withPRSs
done

# Create a file listing the predictors files
pheno=$(echo Height21 BMI21 GCSE ADHD)
gwas=$(echo HEIG03 BODY11 EDUC03 ADHD04)

for i in $(seq 1 4);do
pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')

cat > /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withPRSs/TEDS.w_hm3.${gwas_i}.EUR-PRSs.predictor_groups <<EOF
predictors 
/users/k1806347/brc_scratch/Data/TEDS/PolygenicScores/EUR/${gwas_i}/TEDS.w_hm3.${gwas_i}.EUR.profiles
EOF

done

pheno=$(echo Height21 BMI21 GCSE ADHD)
gwas=$(echo HEIG03 BODY11 EDUC03 ADHD04)
prev=$(echo NA NA NA NA)

# pT+clump (sparse)
for i in $(seq 1 4);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  prev_i=$(echo ${prev} | cut -f ${i} -d ' ')

sbatch --mem 10G -n 2 -p brc,shared /users/k1806347/brc_scratch/Software/Rscript.sh /users/k1806347/brc_scratch/Software/MyGit/GenoPred/Scripts/Model_builder/Model_builder_V2_nested.R \
    --pheno /users/k1806347/brc_scratch/Data/TEDS/Phenotypic/Derived_outcomes/TEDS_${pheno_i}.txt \
      --keep /users/k1806347/brc_scratch/Data/TEDS/Projected_PCs/Ancestry_idenitfier/TEDS.w_hm3.AllAncestry.EUR.keep \
    --out /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withPRSs/TEDS.w_hm3.${gwas_i}.EUR-PRSs \
    --n_core 2 \
    --compare_predictors T \
    --assoc T \
    --outcome_pop_prev ${prev_i} \
    --predictors /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withPRSs/TEDS.w_hm3.${gwas_i}.EUR-PRSs.predictor_groups
done

TWAS gene stratified polygenic score

. /users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Target_scoring.config

# Make required directories
for pheno_i in $(echo Height21 BMI21 GCSE ADHD);do
mkdir -p /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withPRSs
done

# Create a file listing the predictors files
pheno=$(echo Height21 BMI21 GCSE ADHD)
gwas=$(echo HEIG03 BODY11 EDUC03 ADHD04)
weights=$(cat ${TWAS_rep}/snp_weight_list.txt)

for i in $(seq 1 4);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  
  echo "predictors group" > /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withPRSs/TEDS.w_hm3.${gwas_i}.EUR-PRSs-TWAS_gene_stratified.predictor_groups

  for weight in ${weights}; do
    echo ${TEDS_output_dir}/FunctionallyInformedPolygenicScores/EUR/${weight}/TEDS.w_hm3.EUR.${weight}.${gwas_i}.fiprofile GeRS >> /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withPRSs/TEDS.w_hm3.${gwas_i}.EUR-PRSs-TWAS_gene_stratified.predictor_groups
  done

    echo ${TEDS_output_dir}/PolygenicScores_stratified_TWAS_Gene/${gwas_i}/TEDS.subset.w_hm3.${gwas_i}.profiles strat_PRS >> /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withPRSs/TEDS.w_hm3.${gwas_i}.EUR-PRSs-TWAS_gene_stratified.predictor_groups
done

# Derive and evaluate models
pheno=$(echo Height21 BMI21 GCSE ADHD)
gwas=$(echo HEIG03 BODY11 EDUC03 ADHD04)
prev=$(echo NA NA NA NA)

# 1KG reference
for i in $(seq 1 4);do
  pheno_i=$(echo ${pheno} | cut -f ${i} -d ' ')
  pheno_file_i=$(echo ${pheno_file} | cut -f ${i} -d ' ')
  gwas_i=$(echo ${gwas} | cut -f ${i} -d ' ')
  prev_i=$(echo ${prev} | cut -f ${i} -d ' ')

sbatch --mem 10G -n 2 -p brc,shared /users/k1806347/brc_scratch/Software/Rscript.sh /users/k1806347/brc_scratch/Software/MyGit/GenoPred/Scripts/Model_builder/Model_builder_V2_nested.R \
    --pheno ${TEDS_output_dir}/Phenotypic/Derived_outcomes/TEDS_${pheno_i}.txt \
      --keep /users/k1806347/brc_scratch/Data/TEDS/Projected_PCs/Ancestry_idenitfier/TEDS.w_hm3.AllAncestry.EUR.keep \
    --out /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withPRSs/TEDS.w_hm3.${gwas_i}.EUR-PRSs-TWAS_gene_stratified \
    --n_core 2 \
    --compare_predictors F \
    --assoc T \
    --outcome_pop_prev ${prev_i} \
    --predictors /users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/${pheno_i}/Association_withPRSs/TEDS.w_hm3.${gwas_i}.EUR-PRSs-TWAS_gene_stratified.predictor_groups
done


3.10 Estimate proportion of SNP-based heritability explained by GeRS, PRS and stratified PRS

3.10.1 UK Biobank

Estimate using GeRS

pheno<-c('Depression','Intelligence','BMI','Height','T2D','CAD','IBD','RheuArth')
gwas<-c('DEPR06','COLL01','BODY03','HEIG03','DIAB05','COAD01','CROH01','RHEU01')

prev=c(0.15,NA,NA,NA,0.05,0.03,0.013,0.00164,0.005)

gwas_desc<-read.csv("/users/k1806347/brc_scratch/Data/GWAS_sumstats/UKBB_phenotype_GWAS_descrip.csv")

library(avengeme)

GeRS_res<-list()
nsnp_logs<-list()
for(i in 1:length(gwas)){
  res_i<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/',pheno[i],'/Association_withGeRSs/UKBB.w_hm3.AllTissue.',gwas[i],'.EUR-GeRSs.per_PT.pred_eval.txt'), header=T, stringsAsFactors=F)
  
  res_i<-res_i[1:dim(res_i)[1]-1,]
  res_i$Indep_Z<-res_i$R/res_i$SE
  
  GeRS_res[[gwas[i]]]<-res_i
  
  nsnp_log<-read.table(paste0('/users/k1806347/brc_scratch/Data/1KG/Phase3/Score_files_for_poylygenic_stratified_TWAS_Gene/',gwas[i],'/1KGPhase3.w_hm3.',gwas[i],'.NSNP_per_pT'), header=T)
  
  nsnp_logs[[gwas[i]]]<-nsnp_log
}

mod_res_all<-NULL
for(i in 1:length(gwas)){
  if(is.na(prev[i])){
    targ_N<-GeRS_res[[gwas[i]]]$N[1]
  
    mod_res<-estimatePolygenicModel(p=GeRS_res[[gwas[i]]]$Indep_Z, 
                           nsnp=nsnp_logs[[gwas[i]]]$NSNP[length(nsnp_logs[[gwas[i]]]$NSNP)], 
                           n=c(gwas_desc$N[gwas_desc$Code == gwas[i]], targ_N), 
                           pupper = c(0,1e-06,1e-05,1e-04,0.001,0.01,0.05,0.1,0.5,1),
                           binary = c(FALSE, FALSE), 
                           prevalence = c(NA, NA), 
                           sampling = c(NA, NA), 
                           fixvg2pi02 = T,
                           alpha = 0.05)
    
    mod_res_all<-rbind(mod_res_all,data.frame(Phenotype=pheno[i],
                                              GWAS=gwas[i],
                                                                          nsnp=nsnp_logs[[gwas[i]]]$NSNP[length(nsnp_logs[[gwas[i]]]$NSNP)], 
                                              vg_est=mod_res$vg[1],
                                              vg_lowCI=mod_res$vg[2],
                                              vg_highCI=mod_res$vg[3],
                                              pi0_est=mod_res$pi0[1],
                                              pi0_lowCI=mod_res$pi0[2],
                                              pi0_highCI=mod_res$pi0[3]))
    
  } else {
    targ_N<-GeRS_res[[gwas[i]]]$N[1]
    targ_N_Ca<-GeRS_res[[gwas[i]]]$Ncase[1]
    targ_N_Co<-GeRS_res[[gwas[i]]]$Ncont[1]

    mod_res<-estimatePolygenicModel(p=GeRS_res[[gwas[i]]]$Indep_Z, 
                           nsnp=nsnp_logs[[gwas[i]]]$NSNP[length(nsnp_logs[[gwas[i]]]$NSNP)], 
                           n=c(gwas_desc$N[gwas_desc$Code == gwas[i]], targ_N), 
                           pupper = c(0,1e-06,1e-05,1e-04,0.001,0.01,0.05,0.1,0.5,1),
                           binary = c(T, T), 
                           prevalence = prev[i], 
                           sampling = c(gwas_desc$Ncase[gwas_desc$Code == gwas[i]]/(gwas_desc$Ncase[gwas_desc$Code == gwas[i]]+gwas_desc$Ncontrol[gwas_desc$Code == gwas[i]]), targ_N_Ca/(targ_N_Ca+targ_N_Co)), 
                           fixvg2pi02 = T,
                           alpha = 0.05)
    
    mod_res_all<-rbind(mod_res_all,data.frame(Phenotype=pheno[i],
                                              GWAS=gwas[i],
                                                                          nsnp=nsnp_logs[[gwas[i]]]$NSNP[length(nsnp_logs[[gwas[i]]]$NSNP)], 
                                              vg_est=mod_res$vg[1],
                                              vg_lowCI=mod_res$vg[2],
                                              vg_highCI=mod_res$vg[3],
                                              pi0_est=mod_res$pi0[1],
                                              pi0_lowCI=mod_res$pi0[2],
                                              pi0_highCI=mod_res$pi0[3]))
    
  }
}

write.csv(mod_res_all, '/users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/GeRS_AVENGME_res.csv', row.names=F)

Estimate using GeRS (colocalised)

pheno<-c('Depression','Intelligence','BMI','Height','T2D','CAD','IBD','RheuArth')
gwas<-c('DEPR06','COLL01','BODY03','HEIG03','DIAB05','COAD01','CROH01','RHEU01')

prev=c(0.15,NA,NA,NA,0.05,0.03,0.013,0.00164,0.005)

gwas_desc<-read.csv("/users/k1806347/brc_scratch/Data/GWAS_sumstats/UKBB_phenotype_GWAS_descrip.csv")

library(avengeme)

GeRS_res<-list()
nsnp_logs<-list()
for(i in 1:length(gwas)){
  res_i<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/',pheno[i],'/Association_withGeRSs/UKBB.w_hm3.AllTissue.',gwas[i],'.EUR-GeRSs_pT_withColoc.per_PT.pred_eval.txt'), header=T, stringsAsFactors=F)
  
  res_i<-res_i[1:dim(res_i)[1]-1,]
  res_i$Indep_Z<-res_i$R/res_i$SE
  
  GeRS_res[[gwas[i]]]<-res_i
  
  nsnp_log<-read.table(paste0('/users/k1806347/brc_scratch/Data/1KG/Phase3/Score_files_for_poylygenic_stratified_TWAS_Gene/',gwas[i],'/1KGPhase3.w_hm3.',gwas[i],'.NSNP_per_pT'), header=T)
  
  nsnp_logs[[gwas[i]]]<-nsnp_log
}

mod_res_all<-NULL
for(i in 1:length(gwas)){
  if(is.na(prev[i])){
    targ_N<-GeRS_res[[gwas[i]]]$N[1]
  
    mod_res<-estimatePolygenicModel(p=GeRS_res[[gwas[i]]]$Indep_Z, 
                           nsnp=nsnp_logs[[gwas[i]]]$NSNP[length(nsnp_logs[[gwas[i]]]$NSNP)], 
                           n=c(gwas_desc$N[gwas_desc$Code == gwas[i]], targ_N), 
                           pupper = c(0,1e-06,1e-05,1e-04,0.001,0.01,0.05,0.1,0.5,1),
                           binary = c(FALSE, FALSE), 
                           prevalence = c(NA, NA), 
                           sampling = c(NA, NA), 
                           fixvg2pi02 = T,
                           alpha = 0.05)
    
    mod_res_all<-rbind(mod_res_all,data.frame(Phenotype=pheno[i],
                                              GWAS=gwas[i],
                                                                          nsnp=nsnp_logs[[gwas[i]]]$NSNP[length(nsnp_logs[[gwas[i]]]$NSNP)], 
                                              vg_est=mod_res$vg[1],
                                              vg_lowCI=mod_res$vg[2],
                                              vg_highCI=mod_res$vg[3],
                                              pi0_est=mod_res$pi0[1],
                                              pi0_lowCI=mod_res$pi0[2],
                                              pi0_highCI=mod_res$pi0[3]))
    
  } else {
    targ_N<-GeRS_res[[gwas[i]]]$N[1]
    targ_N_Ca<-GeRS_res[[gwas[i]]]$Ncase[1]
    targ_N_Co<-GeRS_res[[gwas[i]]]$Ncont[1]

    mod_res<-estimatePolygenicModel(p=GeRS_res[[gwas[i]]]$Indep_Z, 
                           nsnp=nsnp_logs[[gwas[i]]]$NSNP[length(nsnp_logs[[gwas[i]]]$NSNP)], 
                           n=c(gwas_desc$N[gwas_desc$Code == gwas[i]], targ_N), 
                           pupper = c(0,1e-06,1e-05,1e-04,0.001,0.01,0.05,0.1,0.5,1),
                           binary = c(T, T), 
                           prevalence = prev[i], 
                           sampling = c(gwas_desc$Ncase[gwas_desc$Code == gwas[i]]/(gwas_desc$Ncase[gwas_desc$Code == gwas[i]]+gwas_desc$Ncontrol[gwas_desc$Code == gwas[i]]), targ_N_Ca/(targ_N_Ca+targ_N_Co)), 
                           fixvg2pi02 = T,
                           alpha = 0.05)
    
    mod_res_all<-rbind(mod_res_all,data.frame(Phenotype=pheno[i],
                                              GWAS=gwas[i],
                                                                          nsnp=nsnp_logs[[gwas[i]]]$NSNP[length(nsnp_logs[[gwas[i]]]$NSNP)], 
                                              vg_est=mod_res$vg[1],
                                              vg_lowCI=mod_res$vg[2],
                                              vg_highCI=mod_res$vg[3],
                                              pi0_est=mod_res$pi0[1],
                                              pi0_lowCI=mod_res$pi0[2],
                                              pi0_highCI=mod_res$pi0[3]))
    
  }
}

write.csv(mod_res_all, '/users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/GeRS_coloc_AVENGME_res.csv', row.names=F)

Estimate using PRS

pheno<-c('Depression','Intelligence','BMI','Height','T2D','CAD','IBD','RheuArth')
gwas<-c('DEPR06','COLL01','BODY03','HEIG03','DIAB05','COAD01','CROH01','RHEU01')

prev=c(0.15,NA,NA,NA,0.05,0.03,0.013,0.00164,0.005)

gwas_desc<-read.csv("/users/k1806347/brc_scratch/Data/GWAS_sumstats/UKBB_phenotype_GWAS_descrip.csv")

library(avengeme)

PRS_res<-list()
nsnp_logs<-list()
for(i in 1:length(gwas)){
  res_i<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/',pheno[i],'/Association_withPRSs/UKBB.w_hm3.',gwas[i],'.EUR-PRSs.pred_eval.txt'), header=T, stringsAsFactors=F)
  
  res_i<-res_i[1:dim(res_i)[1]-1,]
  res_i$Indep_Z<-res_i$R/res_i$SE
  
  PRS_res[[gwas[i]]]<-res_i
  
  nsnp_log<-read.table(paste0('/users/k1806347/brc_scratch/Data/1KG/Phase3/Score_files_for_polygenic/pt_clump/',gwas[i],'/1KGPhase3.w_hm3.',gwas[i],'.NSNP_per_pT'), header=T)
  
  nsnp_logs[[gwas[i]]]<-nsnp_log
}

mod_res_all<-NULL
for(i in 1:length(gwas)){
  if(is.na(prev[i])){
    targ_N<-PRS_res[[gwas[i]]]$N[1]
  
    mod_res<-estimatePolygenicModel(p=PRS_res[[gwas[i]]]$Indep_Z, 
                           nsnp=nsnp_logs[[gwas[i]]]$NSNP[length(nsnp_logs[[gwas[i]]]$NSNP)], 
                           n=c(gwas_desc$N[gwas_desc$Code == gwas[i]], targ_N), 
                           pupper = c(0,1e-8,1e-06,1e-04,1e-02,0.1,0.2,0.3,0.4,0.5,1),
                           binary = c(FALSE, FALSE), 
                           prevalence = c(NA, NA), 
                           sampling = c(NA, NA), 
                           fixvg2pi02 = T,
                           alpha = 0.05)
    
    mod_res_all<-rbind(mod_res_all,data.frame(Phenotype=pheno[i],
                                              GWAS=gwas[i],
                                                                          nsnp=nsnp_logs[[gwas[i]]]$NSNP[length(nsnp_logs[[gwas[i]]]$NSNP)], 
                                              vg_est=mod_res$vg[1],
                                              vg_lowCI=mod_res$vg[2],
                                              vg_highCI=mod_res$vg[3],
                                              pi0_est=mod_res$pi0[1],
                                              pi0_lowCI=mod_res$pi0[2],
                                              pi0_highCI=mod_res$pi0[3]))
    
  } else {
    targ_N<-PRS_res[[gwas[i]]]$N[1]
    targ_N_Ca<-PRS_res[[gwas[i]]]$Ncase[1]
    targ_N_Co<-PRS_res[[gwas[i]]]$Ncont[1]

    mod_res<-estimatePolygenicModel(p=PRS_res[[gwas[i]]]$Indep_Z, 
                           nsnp=nsnp_logs[[gwas[i]]]$NSNP[length(nsnp_logs[[gwas[i]]]$NSNP)], 
                           n=c(gwas_desc$N[gwas_desc$Code == gwas[i]], targ_N), 
                           pupper = c(0,1e-8,1e-06,1e-04,1e-02,0.1,0.2,0.3,0.4,0.5,1),
                           binary = c(T, T), 
                           prevalence = prev[i], 
                           sampling = c(gwas_desc$Ncase[gwas_desc$Code == gwas[i]]/(gwas_desc$Ncase[gwas_desc$Code == gwas[i]]+gwas_desc$Ncontrol[gwas_desc$Code == gwas[i]]), targ_N_Ca/(targ_N_Ca+targ_N_Co)), 
                           fixvg2pi02 = T,
                           alpha = 0.05)
    
    mod_res_all<-rbind(mod_res_all,data.frame(Phenotype=pheno[i],
                                              GWAS=gwas[i],
                                                                          nsnp=nsnp_logs[[gwas[i]]]$NSNP[length(nsnp_logs[[gwas[i]]]$NSNP)], 
                                              vg_est=mod_res$vg[1],
                                              vg_lowCI=mod_res$vg[2],
                                              vg_highCI=mod_res$vg[3],
                                              pi0_est=mod_res$pi0[1],
                                              pi0_lowCI=mod_res$pi0[2],
                                              pi0_highCI=mod_res$pi0[3]))
    
  }
}

write.csv(mod_res_all, '/users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/PRS_AVENGME_res.csv', row.names=F)

3.10.2 TEDS

Estimate using GeRS

pheno<-c('Height21','BMI21','GCSE','ADHD')

gwas<-c('HEIG03','BODY11','EDUC03','ADHD04')

prev=c(NA,NA,NA,NA)

gwas_desc<-read.csv("/users/k1806347/brc_scratch/Data/GWAS_sumstats/TEDS_phenotype_GWAS_descrip.csv")

library(avengeme)

GeRS_res<-list()
nsnp_logs<-list()
for(i in 1:length(gwas)){
  res_i<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/',pheno[i],'/Association_withGeRSs/TEDS.w_hm3.AllTissue.',gwas[i],'.EUR-GeRSs.per_PT.pred_eval.txt'), header=T, stringsAsFactors=F)
  
  res_i<-res_i[1:dim(res_i)[1]-1,]
  res_i$Indep_Z<-res_i$R/res_i$SE
  
  GeRS_res[[gwas[i]]]<-res_i
  
  nsnp_log<-read.table(paste0('/users/k1806347/brc_scratch/Data/1KG/Phase3/Score_files_for_poylygenic_stratified_TWAS_Gene/',gwas[i],'/1KGPhase3.w_hm3.',gwas[i],'.NSNP_per_pT'), header=T)
  
  nsnp_logs[[gwas[i]]]<-nsnp_log
}

mod_res_all<-NULL
for(i in 1:length(gwas)){
  if(is.na(prev[i])){
    targ_N<-GeRS_res[[gwas[i]]]$N[1]
  
    mod_res<-estimatePolygenicModel(p=GeRS_res[[gwas[i]]]$Indep_Z, 
                           nsnp=nsnp_logs[[gwas[i]]]$NSNP[length(nsnp_logs[[gwas[i]]]$NSNP)], 
                           n=c(gwas_desc$N[gwas_desc$Code == gwas[i]], targ_N), 
                           pupper = c(0,1e-06,1e-05,1e-04,0.001,0.01,0.05,0.1,0.5,1),
                           binary = c(FALSE, FALSE), 
                           prevalence = c(NA, NA), 
                           sampling = c(NA, NA), 
                           fixvg2pi02 = T,
                           alpha = 0.05)
    
    mod_res_all<-rbind(mod_res_all,data.frame(Phenotype=pheno[i],
                                              GWAS=gwas[i],
                                                                          nsnp=nsnp_logs[[gwas[i]]]$NSNP[length(nsnp_logs[[gwas[i]]]$NSNP)], 
                                              vg_est=mod_res$vg[1],
                                              vg_lowCI=mod_res$vg[2],
                                              vg_highCI=mod_res$vg[3],
                                              pi0_est=mod_res$pi0[1],
                                              pi0_lowCI=mod_res$pi0[2],
                                              pi0_highCI=mod_res$pi0[3]))
    
  } else {
    targ_N<-GeRS_res[[gwas[i]]]$N[1]
    targ_N_Ca<-GeRS_res[[gwas[i]]]$Ncase[1]
    targ_N_Co<-GeRS_res[[gwas[i]]]$Ncont[1]

    mod_res<-estimatePolygenicModel(p=GeRS_res[[gwas[i]]]$Indep_Z, 
                           nsnp=nsnp_logs[[gwas[i]]]$NSNP[length(nsnp_logs[[gwas[i]]]$NSNP)], 
                           n=c(gwas_desc$N[gwas_desc$Code == gwas[i]], targ_N), 
                           pupper = c(0,1e-06,1e-05,1e-04,0.001,0.01,0.05,0.1,0.5,1),
                           binary = c(T, T), 
                           prevalence = prev[i], 
                           sampling = c(gwas_desc$Ncase[gwas_desc$Code == gwas[i]]/(gwas_desc$Ncase[gwas_desc$Code == gwas[i]]+gwas_desc$Ncontrol[gwas_desc$Code == gwas[i]]), targ_N_Ca/(targ_N_Ca+targ_N_Co)), 
                           fixvg2pi02 = T,
                           alpha = 0.05)
    
    mod_res_all<-rbind(mod_res_all,data.frame(Phenotype=pheno[i],
                                              GWAS=gwas[i],
                                                                          nsnp=nsnp_logs[[gwas[i]]]$NSNP[length(nsnp_logs[[gwas[i]]]$NSNP)], 
                                              vg_est=mod_res$vg[1],
                                              vg_lowCI=mod_res$vg[2],
                                              vg_highCI=mod_res$vg[3],
                                              pi0_est=mod_res$pi0[1],
                                              pi0_lowCI=mod_res$pi0[2],
                                              pi0_highCI=mod_res$pi0[3]))
    
  }
}

write.csv(mod_res_all, '/users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/GeRS_AVENGME_res.csv', row.names=F)

Estimate using GeRS (colocalised)

pheno<-c('Height21','BMI21','GCSE','ADHD')

gwas<-c('HEIG03','BODY11','EDUC03','ADHD04')

prev=c(NA,NA,NA,NA)

gwas_desc<-read.csv("/users/k1806347/brc_scratch/Data/GWAS_sumstats/TEDS_phenotype_GWAS_descrip.csv")

library(avengeme)

GeRS_res<-list()
nsnp_logs<-list()
for(i in 1:length(gwas)){
  res_i<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/',pheno[i],'/Association_withGeRSs/TEDS.w_hm3.AllTissue.',gwas[i],'.EUR-GeRSs_pT_withColoc.per_PT.pred_eval.txt'), header=T, stringsAsFactors=F)
  
  res_i<-res_i[1:dim(res_i)[1]-1,]
  res_i$Indep_Z<-res_i$R/res_i$SE
  
  GeRS_res[[gwas[i]]]<-res_i
  
  nsnp_log<-read.table(paste0('/users/k1806347/brc_scratch/Data/1KG/Phase3/Score_files_for_poylygenic_stratified_TWAS_Gene/',gwas[i],'/1KGPhase3.w_hm3.',gwas[i],'.NSNP_per_pT'), header=T)
  
  nsnp_logs[[gwas[i]]]<-nsnp_log
}

mod_res_all<-NULL
for(i in 1:length(gwas)){
  if(is.na(prev[i])){
    targ_N<-GeRS_res[[gwas[i]]]$N[1]
  
    mod_res<-estimatePolygenicModel(p=GeRS_res[[gwas[i]]]$Indep_Z, 
                           nsnp=nsnp_logs[[gwas[i]]]$NSNP[length(nsnp_logs[[gwas[i]]]$NSNP)], 
                           n=c(gwas_desc$N[gwas_desc$Code == gwas[i]], targ_N), 
                           pupper = c(0,1e-06,1e-05,1e-04,0.001,0.01,0.05,0.1,0.5,1),
                           binary = c(FALSE, FALSE), 
                           prevalence = c(NA, NA), 
                           sampling = c(NA, NA), 
                           fixvg2pi02 = T,
                           alpha = 0.05)
    
    mod_res_all<-rbind(mod_res_all,data.frame(Phenotype=pheno[i],
                                              GWAS=gwas[i],
                                                                          nsnp=nsnp_logs[[gwas[i]]]$NSNP[length(nsnp_logs[[gwas[i]]]$NSNP)], 
                                              vg_est=mod_res$vg[1],
                                              vg_lowCI=mod_res$vg[2],
                                              vg_highCI=mod_res$vg[3],
                                              pi0_est=mod_res$pi0[1],
                                              pi0_lowCI=mod_res$pi0[2],
                                              pi0_highCI=mod_res$pi0[3]))
    
  } else {
    targ_N<-GeRS_res[[gwas[i]]]$N[1]
    targ_N_Ca<-GeRS_res[[gwas[i]]]$Ncase[1]
    targ_N_Co<-GeRS_res[[gwas[i]]]$Ncont[1]

    mod_res<-estimatePolygenicModel(p=GeRS_res[[gwas[i]]]$Indep_Z, 
                           nsnp=nsnp_logs[[gwas[i]]]$NSNP[length(nsnp_logs[[gwas[i]]]$NSNP)], 
                           n=c(gwas_desc$N[gwas_desc$Code == gwas[i]], targ_N), 
                           pupper = c(0,1e-06,1e-05,1e-04,0.001,0.01,0.05,0.1,0.5,1),
                           binary = c(T, T), 
                           prevalence = prev[i], 
                           sampling = c(gwas_desc$Ncase[gwas_desc$Code == gwas[i]]/(gwas_desc$Ncase[gwas_desc$Code == gwas[i]]+gwas_desc$Ncontrol[gwas_desc$Code == gwas[i]]), targ_N_Ca/(targ_N_Ca+targ_N_Co)), 
                           fixvg2pi02 = T,
                           alpha = 0.05)
    
    mod_res_all<-rbind(mod_res_all,data.frame(Phenotype=pheno[i],
                                              GWAS=gwas[i],
                                                                          nsnp=nsnp_logs[[gwas[i]]]$NSNP[length(nsnp_logs[[gwas[i]]]$NSNP)], 
                                              vg_est=mod_res$vg[1],
                                              vg_lowCI=mod_res$vg[2],
                                              vg_highCI=mod_res$vg[3],
                                              pi0_est=mod_res$pi0[1],
                                              pi0_lowCI=mod_res$pi0[2],
                                              pi0_highCI=mod_res$pi0[3]))
    
  }
}

write.csv(mod_res_all, '/users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/GeRS_coloc_AVENGME_res.csv', row.names=F)

Estimate using PRS

pheno<-c('Height21','BMI21','GCSE','ADHD')

gwas<-c('HEIG03','BODY11','EDUC03','ADHD04')

prev=c(NA,NA,NA,NA)

gwas_desc<-read.csv("/users/k1806347/brc_scratch/Data/GWAS_sumstats/TEDS_phenotype_GWAS_descrip.csv")

library(avengeme)

PRS_res<-list()
nsnp_logs<-list()
for(i in 1:length(gwas)){
  res_i<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/',pheno[i],'/Association_withPRSs/TEDS.w_hm3.',gwas[i],'.EUR-PRSs.pred_eval.txt'), header=T, stringsAsFactors=F)
  
  res_i<-res_i[1:dim(res_i)[1]-1,]
  res_i$Indep_Z<-res_i$R/res_i$SE
  
  PRS_res[[gwas[i]]]<-res_i
  
  nsnp_log<-read.table(paste0('/users/k1806347/brc_scratch/Data/1KG/Phase3/Score_files_for_poylygenic/',gwas[i],'/1KGPhase3.w_hm3.',gwas[i],'.NSNP_per_pT'), header=T)
  
  nsnp_logs[[gwas[i]]]<-nsnp_log
}

mod_res_all<-NULL
for(i in 1:length(gwas)){
  if(is.na(prev[i])){
    targ_N<-PRS_res[[gwas[i]]]$N[1]
  
    mod_res<-estimatePolygenicModel(p=PRS_res[[gwas[i]]]$Indep_Z, 
                           nsnp=nsnp_logs[[gwas[i]]]$NSNP[length(nsnp_logs[[gwas[i]]]$NSNP)], 
                           n=c(gwas_desc$N[gwas_desc$Code == gwas[i]], targ_N), 
                           pupper = c(0,1e-8,1e-06,1e-04,1e-02,0.1,0.2,0.3,0.4,0.5,1),
                           binary = c(FALSE, FALSE), 
                           prevalence = c(NA, NA), 
                           sampling = c(NA, NA), 
                           fixvg2pi02 = T,
                           alpha = 0.05)
    
    mod_res_all<-rbind(mod_res_all,data.frame(Phenotype=pheno[i],
                                              GWAS=gwas[i],
                                                                          nsnp=nsnp_logs[[gwas[i]]]$NSNP[length(nsnp_logs[[gwas[i]]]$NSNP)], 
                                              vg_est=mod_res$vg[1],
                                              vg_lowCI=mod_res$vg[2],
                                              vg_highCI=mod_res$vg[3],
                                              pi0_est=mod_res$pi0[1],
                                              pi0_lowCI=mod_res$pi0[2],
                                              pi0_highCI=mod_res$pi0[3]))
    
  } else {
    targ_N<-PRS_res[[gwas[i]]]$N[1]
    targ_N_Ca<-PRS_res[[gwas[i]]]$Ncase[1]
    targ_N_Co<-PRS_res[[gwas[i]]]$Ncont[1]

    mod_res<-estimatePolygenicModel(p=PRS_res[[gwas[i]]]$Indep_Z, 
                           nsnp=nsnp_logs[[gwas[i]]]$NSNP[length(nsnp_logs[[gwas[i]]]$NSNP)], 
                           n=c(gwas_desc$N[gwas_desc$Code == gwas[i]], targ_N), 
                           pupper = c(0,1e-8,1e-06,1e-04,1e-02,0.1,0.2,0.3,0.4,0.5,1),
                           binary = c(T, T), 
                           prevalence = prev[i], 
                           sampling = c(gwas_desc$Ncase[gwas_desc$Code == gwas[i]]/(gwas_desc$Ncase[gwas_desc$Code == gwas[i]]+gwas_desc$Ncontrol[gwas_desc$Code == gwas[i]]), targ_N_Ca/(targ_N_Ca+targ_N_Co)), 
                           fixvg2pi02 = T,
                           alpha = 0.05)
    
    mod_res_all<-rbind(mod_res_all,data.frame(Phenotype=pheno[i],
                                              GWAS=gwas[i],
                                                                          nsnp=nsnp_logs[[gwas[i]]]$NSNP[length(nsnp_logs[[gwas[i]]]$NSNP)], 
                                              vg_est=mod_res$vg[1],
                                              vg_lowCI=mod_res$vg[2],
                                              vg_highCI=mod_res$vg[3],
                                              pi0_est=mod_res$pi0[1],
                                              pi0_lowCI=mod_res$pi0[2],
                                              pi0_highCI=mod_res$pi0[3]))
    
  }
}

write.csv(mod_res_all, '/users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/PRS_AVENGME_res.csv', row.names=F)

4 Results


4.1 UK Biobank

Plot per pT GeRS results

#####
# Compare results across pTs for each phenotype
#####
pheno<-c('Depression','Intelligence','BMI','Height','T2D','CAD','IBD','RheuArth')
gwas<-c('DEPR06','COLL01','BODY03','HEIG03','DIAB05','COAD01','CROH01','RHEU01')
weights=read.table('/users/k1806347/brc_scratch/Data/TWAS_sumstats/FUSION/snp_weight_list.txt', header=F)$V1

weights_clean<-gsub('_',' ',weights)
weights_clean<-gsub('CMC.BRAIN.RNASEQ','CMC DLPFC',weights_clean)
weights_clean<-gsub('SPLICING','Splicing',weights_clean)
weights_clean<-gsub('NTR.BLOOD.RNAARR','NTR Blood',weights_clean)
weights_clean<-gsub('YFS.BLOOD.RNAARR','YFS Blood',weights_clean)
weights_clean<-gsub('METSIM.ADIPOSE.RNASEQ','METSIM Adipose',weights_clean)
weights_clean[!grepl('CMC|NTR|YFS|METSIM', weights)]<-paste0('GTEx ',weights_clean[!grepl('CMC|NTR|YFS|METSIM', weights)])
#to add gtex to each of the snp weights which don't have CMC NTR or YFS in front
weights_clean<-gsub('Brain', '', weights_clean)
weights_clean <- gsub('Anterior cingulate cortex', 'ACC', weights_clean)
weights_clean <- gsub('basal ganglia', '', weights_clean)
weights_clean <- gsub('BA9', '', weights_clean)
weights_clean <- gsub('BA24', '', weights_clean)
weights_clean <- gsub('  ', ' ', weights_clean)
weights_clean_short<-substr(weights_clean, start = 1, stop = 15)  #start the name at the first character and stop at the 25th
weights_clean_short[nchar(weights_clean) > 15]<-paste0(weights_clean_short[nchar(weights_clean) > 15], "...")

res<-NULL
res_best<-NULL
for(i in 1:length(gwas)){
  for(weight in 1:length(weights)){
    res_i<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/',pheno[i],'/Association_withGeRSs/UKBB.w_hm3.',weights[weight],'.',gwas[i],'.EUR-GeRSs.pred_eval.txt'), header=T, stringsAsFactors=F)

    res_i$Phenotype<-pheno[i]
    res_i$Weight<-weights[weight]
    
    if(sum(grepl('R2l',names(res_i)))>0){
        res_i<-res_i[,c('Phenotype','Weight','Model','R','SE','P','R2l')]
        names(res_i)<-c('Phenotype','Weight','Model','R','SE','P','R2')
        res_i$Binary<-T
    } else {
        res_i<-res_i[,c('Phenotype','Weight','Model','R','SE','P','R2o')]
        names(res_i)<-c('Phenotype','Weight','Model','R','SE','P','R2')
        res_i$Binary<-F
    }
    
    res_i$Model<-gsub('_group','',gsub(paste0(gwas[i],'.'),'',res_i$Model))
    res_i$Model<-factor(res_i$Model, levels=res_i$Model)
    
    res_i_best<-res_i[res_i$R == max(res_i$R),]
  
    res<-rbind(res, res_i)
    res_best<-rbind(res_best, res_i_best)
  }
}

res_brief<-res[,c('Phenotype','Weight','Model','R','SE','P')]
res_best_brief<-res_best[,c('Phenotype','Weight','Model','R','SE','P')]

write.csv(res_brief, '/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/GeRS_per_pT.csv', row.names=F, quote=F)
write.csv(res_best_brief, '/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/GeRS_best_pT.csv', row.names=F, quote=F)

library(ggplot2)
library(cowplot)

res$Model<-gsub('e.0','*x*10^-', res$Model)
res$Model<-factor(res$Model, levels=unique(res$Model))
res$P[res$P < 1e-300]<-0
res$P<-format(res$P, scientific = TRUE, digits = 1)
res$P<-gsub('e-','*x*10^-',res$P)
res$P[res$P == ' 0e+00']<-paste0("'<1'*x*10^-300")

res_plot<-list()
for(i in 1:length(gwas)){
  # Extract result for 5 most predictive tissue
  tmp<-res_best[res_best$Phenotype == pheno[i],]
  tmp<-tmp[order(-tmp$R2),]
  tmp<-tmp[1:3,]
  best_weights<-tmp$Weight
  
  res_tmp<-res[res$Phenotype == pheno[i] & (res$Weight %in% best_weights),]
  ylim_max<-max(res_tmp$R2)
  ylim_max<-ylim_max+ylim_max*1.5
  if(res[res$Phenotype == pheno[i],]$Binary[1] == T){
    ylab<-'Liability R-squared'
  } else {
    ylab<-'R-squared'
  }
  
  res_plot_tmp<-list()
  for(weight in best_weights){
    weights_index<-which(weights == weight)
    print(weight)
  res_plot_tmp[[as.character(weights[weights_index])]]<-ggplot(res[res$Phenotype == pheno[i] & res$Weight == weights[weights_index],], aes(x=Model, y=R2)) +
                                    geom_bar(stat="identity", position=position_dodge(), fill='#3399FF') +
                                    labs(y=ylab, x='pT', title=paste0('\n\n',weights_clean_short[weights_index])) +
                                    theme_half_open() +
                                    ylim(0,ylim_max) +
                                    geom_text(data=res[res$Phenotype == pheno[i] & res$Weight == weights[weights_index],], aes(x=Model, y=R2, label=P), vjust=0.5, hjust= -0.15, angle=90, size=4, parse=T) +
                                    theme(axis.text.x = element_text(angle = 55, vjust = 1, hjust=1), plot.title = element_text(hjust = 0.5, size=12)) +
                                    background_grid(major = 'y', minor = 'y') +
                                    scale_x_discrete(labels = parse(text = as.character(res[res$Phenotype == pheno[i] & res$Weight == weights[weights_index],]$Model))) +
                                    coord_cartesian(clip='off')

  }
  res_plot[[pheno[i]]]<-plot_grid(plotlist=res_plot_tmp, nrow = 1)
}

png('/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/GeRS_per_pT_UKBB.png', units='px', res=300, width=3000, height=7000)
  plot_grid(plotlist=res_plot, ncol = 1, labels = paste0(pheno))
dev.off()

#######
# Recreate plots using R on the y axis and full SNP-weight set names
#######

res_plot<-list()
for(i in 1:length(gwas)){
  # Extract result for 5 most predictive tissue
  tmp<-res_best[res_best$Phenotype == pheno[i],]
  tmp<-tmp[order(-tmp$R),]
  tmp<-tmp[1:3,]
  best_weights<-tmp$Weight
  
  res_tmp<-res[res$Phenotype == pheno[i] & (res$Weight %in% best_weights),]
  ylim_max<-max(res_tmp$R)
  ylim_max<-ylim_max+ylim_max*1.5
  if(min(res_tmp$R) < 0){
    ylim_min<-min(res_tmp$R)
    ylim_min<-ylim_min-max(res_tmp$SE)
  } else {
    ylim_min<-NA
  }

  res_plot_tmp<-list()
  for(weight in best_weights){
    weights_index<-which(weights == weight)
    print(weight)
  res_plot_tmp[[as.character(weights[weights_index])]]<-ggplot(res[res$Phenotype == pheno[i] & res$Weight == weights[weights_index],], aes(x=Model, y=R)) +
                                    geom_bar(stat="identity", position=position_dodge(), fill='#3399FF') +
                                    geom_errorbar(aes(ymin=R-SE, ymax=R+SE), width=.2, position=position_dodge(.9)) +
                                    labs(y='Correlation', x='pT', title=paste0('\n\n',weights_clean[weights_index])) +
                                    theme_half_open() +
                                    ylim(ylim_min,ylim_max) +
                                    geom_text(data=res[res$Phenotype == pheno[i] & res$Weight == weights[weights_index],], aes(x=Model, y=R+SE, label=P), vjust=0.3, hjust= -0.15, angle=90, size=4, parse=T) +
                                    theme(axis.text.x = element_text(angle = 55, vjust = 1, hjust=1), plot.title = element_text(hjust = 0.4, size=12)) +
                                    background_grid(major = 'y', minor = 'y') +
                                    scale_x_discrete(labels = parse(text = as.character(res[res$Phenotype == pheno[i] & res$Weight == weights[weights_index],]$Model))) +
                                    coord_cartesian(clip='off')

  }
  res_plot[[pheno[i]]]<-plot_grid(plotlist=res_plot_tmp, nrow = 1)
}

png('/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/GeRS_per_pT_UKBB_R.png', units='px', res=300, width=3000, height=7000)
  plot_grid(plotlist=res_plot, ncol = 1, labels = paste0(pheno))
dev.off()

Plot comparison results

#####
# Compare results from each approach
#####
pheno<-c('Depression','Intelligence','BMI','Height','T2D','CAD','IBD','RheuArth')
gwas<-c('DEPR06','COLL01','BODY03','HEIG03','DIAB05','COAD01','CROH01','RHEU01')

res<-list()
for(i in 1:length(gwas)){
res_1<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/',pheno[i],'/Association_withGeRSs/UKBB.w_hm3.AllTissue.',gwas[i],'.EUR-GeRSs.per_PT.pred_comp.txt'), header=T, stringsAsFactors=F)
res_1<-res_1[res_1$Model_1 == 'All',]
res_1<-res_1[res_1$Model_2 != 'All',]
res_2<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/',pheno[i],'/Association_withGeRSs/UKBB.w_hm3.AllTissue.',gwas[i],'.EUR-GeRSs.pred_comp.txt'), header=T, stringsAsFactors=F)
res_2<-res_2[res_2$Model_1 == 'All',]
res_2<-res_2[res_2$Model_2 != 'All',]
res_3<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/',pheno[i],'/Association_withPRS_and_GeRSs/UKBB.w_hm3.AllTissue.',gwas[i],'.EUR-GeRSs.EUR-PRSs.pt_clump.pred_comp.txt'), header=T, stringsAsFactors=F)
res_4<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/',pheno[i],'/Association_withPRSs/UKBB.w_hm3.',gwas[i],'.EUR-PRSs-TWAS_gene_stratified.pred_comp.txt'), header=T, stringsAsFactors=F)
res_5<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/',pheno[i],'/Association_withPRS_and_GeRSs/UKBB.w_hm3.AllTissue.',gwas[i],'.EUR-GeRSs.EUR-PRSs.PRScs.pred_comp.txt'), header=T, stringsAsFactors=F)

res[[pheno[i]]]<-data.frame(Test=c('GeRS_multi_pT','GeRS_multi_tissue','PRS_and_GeRS','Strat_PRS','PRScs_and_GeRS'),        
                        do.call(rbind,list( res_1[res_1$Model_2_R == max(res_1$Model_2_R),],
                                                    res_2[res_2$Model_2_R == max(res_2$Model_2_R),],
                                                    res_3[8,],
                                                    res_4[8,],
                                                    res_5[8,])))
}

res_table<-do.call(rbind, res)

# Calculate percentage difference
res_table$R_diff_perc<-res_table$R_diff/res_table$Model_1_R*100

res_table$Phenotype<-gsub('\\..*','',rownames(res_table))
res_table<-res_table[,c('Phenotype',names(res_table)[-length(names(res_table))])]
write.csv(res_table, '/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/GeRS_tests_summary.csv', row.names=F, quote=F)

####
# Plot the R2 when using PRS only, and using PRS + multi-tissue GeRS
####

# Organise the results
res_plot<-list()
for(i in 1:length(gwas)){
  tmp_res<-res[[pheno[i]]]
  
  tmp_res$R_diff_pval_num<-tmp_res$R_diff_pval
  
  tmp_res$R_diff_pval<-format(tmp_res$R_diff_pval, scientific = TRUE, digits = 2)
  tmp_res$R_diff_pval<-gsub('e-','*x*10^-',tmp_res$R_diff_pval)
  
  tmp_res_Model_1<-tmp_res[,grepl('Test|Model_1|R_diff',names(tmp_res))]
  names(tmp_res_Model_1)<-c('Test','Model','R','R_diff','R_diff_pval','R_diff_pval_num')
  tmp_res_Model_2<-tmp_res[,grepl('Test|Model_2|R_diff',names(tmp_res))]
  names(tmp_res_Model_2)<-c('Test','Model','R','R_diff','R_diff_pval','R_diff_pval_num')
  tmp_res_Model_2$R_diff<-NA
  tmp_res_Model_2$R_diff_pval<-NA
  
  tmp_res_plot<-rbind(tmp_res_Model_1,tmp_res_Model_2)
  tmp_res_plot$Phenotype<-pheno[i]
  
  res_plot[[pheno[i]]]<-tmp_res_plot
}

# Combine results for each phenotype and prepare for plotting
All_res_plot<-do.call(rbind, res_plot)

All_res_plot$Test<-factor(All_res_plot$Test, levels=res[[1]]$Test)
All_res_plot$Phenotype<-factor(All_res_plot$Phenotype, level=unique(All_res_plot$Phenotype))
All_res_plot<-All_res_plot[order(All_res_plot$Phenotype,All_res_plot$Test),]

All_res_plot$Val_Label_1<-NA
All_res_plot$Val_Label_1[!is.na(All_res_plot$R_diff)]<-paste0('Diff == ',round(All_res_plot$R_diff[!is.na(All_res_plot$R_diff)],3))

All_res_plot$Val_Label_2<-NA
All_res_plot$Val_Label_2[!is.na(All_res_plot$R_diff)]<-paste0('italic(p) == ',All_res_plot$R_diff_pval[!is.na(All_res_plot$R_diff)])

All_res_plot$Model[!All_res_plot$Model == 'All' & All_res_plot$Test == 'GeRS_multi_pT']<-'GeRS Best pT   '
All_res_plot$Model[All_res_plot$Model == 'All' & All_res_plot$Test == 'GeRS_multi_pT']<-'GeRS Multi pT'

All_res_plot$Model[!All_res_plot$Model == 'All' & All_res_plot$Test == 'GeRS_multi_tissue']<-'GeRS Best Tissue   '
All_res_plot$Model[All_res_plot$Model == 'All' & All_res_plot$Test == 'GeRS_multi_tissue']<-'GeRS Multi Tissue'

All_res_plot$Model[!All_res_plot$Model == 'All' & All_res_plot$Test == 'PRS_and_GeRS']<-'PRS only   '
All_res_plot$Model[All_res_plot$Model == 'All' & All_res_plot$Test == 'PRS_and_GeRS']<-'PRS + GeRS'

All_res_plot$Model[!All_res_plot$Model == 'All' & All_res_plot$Test == 'Strat_PRS']<-'Strat_PRS only'
All_res_plot$Model[All_res_plot$Model == 'All' & All_res_plot$Test == 'Strat_PRS']<-'Strat_PRS + GeRS'

All_res_plot$Model[!All_res_plot$Model == 'All' & All_res_plot$Test == 'PRScs_and_GeRS']<-'PRScs only   '
All_res_plot$Model[All_res_plot$Model == 'All' & All_res_plot$Test == 'PRScs_and_GeRS']<-'PRScs + GeRS'

All_res_plot$Model<-factor(All_res_plot$Model, levels=c("GeRS Best pT   ","GeRS Multi pT", "GeRS Best Tissue   ","GeRS Multi Tissue","PRS only   ","PRS + GeRS", "Strat_PRS only", "Strat_PRS + GeRS","PRScs only   ","PRScs + GeRS"))

library(ggplot2)
library(cowplot)

# Plot results
Plot_1<-ggplot(All_res_plot[All_res_plot$Test == 'GeRS_multi_pT',], aes(x=Phenotype, y=R, fill=Model)) +
          geom_bar(stat="identity", position=position_dodge()) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'GeRS_multi_pT',]$Val_Label_1, parse=T, vjust=-0.5, hjust=0) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'GeRS_multi_pT',]$Val_Label_2, parse=T, vjust=1, hjust=0) +
          labs(y='Correlation', x='') +
              ylim(NA,0.6) +
          theme_half_open() +
          theme(legend.title=element_blank(),legend.position="top") +
          background_grid(major = 'x', minor = 'x') +
          coord_flip()

Plot_2<-ggplot(All_res_plot[All_res_plot$Test == 'GeRS_multi_tissue',], aes(x=Phenotype, y=R, fill=Model)) +
          geom_bar(stat="identity", position=position_dodge()) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'GeRS_multi_tissue',]$Val_Label_1, parse=T, vjust=-0.5, hjust=0) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'GeRS_multi_tissue',]$Val_Label_2, parse=T, vjust=1, hjust=0) +
          labs(y='Correlation', x='') +
          ylim(NA,0.6) +
          theme_half_open() +
          theme(legend.title=element_blank(),legend.position="top") +
          background_grid(major = 'x', minor = 'x') +
          coord_flip()

Plot_3<-ggplot(All_res_plot[All_res_plot$Test == 'PRS_and_GeRS',], aes(x=Phenotype, y=R, fill=Model)) +
          geom_bar(stat="identity", position=position_dodge()) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'PRS_and_GeRS',]$Val_Label_1, parse=T, vjust=-0.5, hjust=0) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'PRS_and_GeRS',]$Val_Label_2, parse=T, vjust=1, hjust=0) +
          labs(y='Correlation', x='') +
          ylim(NA,0.6) +
          theme_half_open() +
          theme(legend.title=element_blank(),legend.position="top") +
          background_grid(major = 'x', minor = 'x') +
          coord_flip()

Plot_4<-ggplot(All_res_plot[All_res_plot$Test == 'Strat_PRS',], aes(x=Phenotype, y=R, fill=Model)) +
          geom_bar(stat="identity", position=position_dodge()) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'Strat_PRS',]$Val_Label_1, parse=T, vjust=-0.5, hjust=0) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'Strat_PRS',]$Val_Label_2, parse=T, vjust=1, hjust=0) +
          labs(y='Correlation', x='') +
          ylim(NA,0.6) +
          theme_half_open() +
          theme(legend.title=element_blank(),legend.position="top") +
          background_grid(major = 'x', minor = 'x') +
          coord_flip()

Plot_5<-ggplot(All_res_plot[All_res_plot$Test == 'PRScs_and_GeRS',], aes(x=Phenotype, y=R, fill=Model)) +
          geom_bar(stat="identity", position=position_dodge()) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'PRScs_and_GeRS',]$Val_Label_1, parse=T, vjust=-0.5, hjust=0) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'PRScs_and_GeRS',]$Val_Label_2, parse=T, vjust=1, hjust=0) +
          labs(y='Correlation', x='') +
          ylim(NA,0.6) +
          theme_half_open() +
          theme(legend.title=element_blank(),legend.position="top") +
          background_grid(major = 'x', minor = 'x') +
          coord_flip()

png('/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/GeRS_tests_summary_UKBB.png', units='px', res=300, width=3000, height=3500)
  plot_grid(Plot_1,Plot_2,Plot_3, Plot_5, labels = "AUTO")
dev.off()

####
# Recreate in black and white
####


# Plot results
Plot_1<-ggplot(All_res_plot[All_res_plot$Test == 'GeRS_multi_pT',], aes(x=Phenotype, y=R, fill=Model)) +
          geom_bar(stat="identity", position=position_dodge()) +
          scale_fill_grey() +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'GeRS_multi_pT',]$Val_Label_1, parse=T, vjust=-0.5, hjust=0) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'GeRS_multi_pT',]$Val_Label_2, parse=T, vjust=1, hjust=0) +
          labs(y='Correlation', x='') +
              ylim(NA,0.6) +
          theme_half_open() +
          theme(legend.title=element_blank(),legend.position="top") +
          background_grid(major = 'x', minor = 'x') +
          coord_flip()

Plot_2<-ggplot(All_res_plot[All_res_plot$Test == 'GeRS_multi_tissue',], aes(x=Phenotype, y=R, fill=Model)) +
          geom_bar(stat="identity", position=position_dodge()) +
          scale_fill_grey() +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'GeRS_multi_tissue',]$Val_Label_1, parse=T, vjust=-0.5, hjust=0) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'GeRS_multi_tissue',]$Val_Label_2, parse=T, vjust=1, hjust=0) +
          labs(y='Correlation', x='') +
          ylim(NA,0.6) +
          theme_half_open() +
          theme(legend.title=element_blank(),legend.position="top") +
          background_grid(major = 'x', minor = 'x') +
          coord_flip()

Plot_3<-ggplot(All_res_plot[All_res_plot$Test == 'PRS_and_GeRS',], aes(x=Phenotype, y=R, fill=Model)) +
          geom_bar(stat="identity", position=position_dodge()) +
          scale_fill_grey() +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'PRS_and_GeRS',]$Val_Label_1, parse=T, vjust=-0.5, hjust=0) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'PRS_and_GeRS',]$Val_Label_2, parse=T, vjust=1, hjust=0) +
          labs(y='Correlation', x='') +
          ylim(NA,0.6) +
          theme_half_open() +
          theme(legend.title=element_blank(),legend.position="top") +
          background_grid(major = 'x', minor = 'x') +
          coord_flip()

Plot_4<-ggplot(All_res_plot[All_res_plot$Test == 'Strat_PRS',], aes(x=Phenotype, y=R, fill=Model)) +
          geom_bar(stat="identity", position=position_dodge()) +
          scale_fill_grey() +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'Strat_PRS',]$Val_Label_1, parse=T, vjust=-0.5, hjust=0) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'Strat_PRS',]$Val_Label_2, parse=T, vjust=1, hjust=0) +
          labs(y='Correlation', x='') +
          ylim(NA,0.6) +
          theme_half_open() +
          theme(legend.title=element_blank(),legend.position="top") +
          background_grid(major = 'x', minor = 'x') +
          coord_flip()

Plot_5<-ggplot(All_res_plot[All_res_plot$Test == 'PRScs_and_GeRS',], aes(x=Phenotype, y=R, fill=Model)) +
          geom_bar(stat="identity", position=position_dodge()) +
          scale_fill_grey() +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'PRScs_and_GeRS',]$Val_Label_1, parse=T, vjust=-0.5, hjust=0) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'PRScs_and_GeRS',]$Val_Label_2, parse=T, vjust=1, hjust=0) +
          labs(y='Correlation', x='') +
          ylim(NA,0.6) +
          theme_half_open() +
          theme(legend.title=element_blank(),legend.position="top") +
          background_grid(major = 'x', minor = 'x') +
          coord_flip()

png('/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/GeRS_tests_summary_UKBB_bw.png', units='px', res=300, width=3000, height=3500)
  plot_grid(Plot_1,Plot_2,Plot_3, Plot_5, labels = "AUTO")
dev.off()

####
# Recreate plot higlighting significant results
####
# Note. I am not going to add error bars as this information is not output with the results files used here. This would either require the difficult job of pulling SE from the pred_eval file or editing the model_builder script and re-running all analyses. There is also quite a lot going on in this figure already as well.

All_res_plot$Sig<-'NS'
All_res_plot$Sig[All_res_plot$R_diff_pval_num < 0.05 & All_res_plot$R_diff > 0]<-'Pos'
All_res_plot$Sig[All_res_plot$R_diff_pval_num < 0.05 & All_res_plot$R_diff < 0]<-'Neg'
All_res_plot$Sig<-factor(All_res_plot$Sig, levels=c('NS','Pos','Neg'))

scale_colour_op <- function(...){
    ggplot2:::manual_scale(
        'colour', 
        values = setNames(c("#000000", "#009933","#FF0000"), c('NS', 'Pos', 'Neg')), 
        ...
    )
}

# Plot results
Plot_1<-ggplot(All_res_plot[All_res_plot$Test == 'GeRS_multi_pT',], aes(x=Phenotype, y=R, fill=Model)) +
          geom_bar(stat="identity", position=position_dodge()) +
          geom_text(aes(y=R+0.04, colour=Sig), label=All_res_plot[All_res_plot$Test == 'GeRS_multi_pT',]$Val_Label_1, parse=T, vjust=-0.5, hjust=0,show.legend = FALSE) +
          geom_text(aes(y=R+0.04, colour=Sig), label=All_res_plot[All_res_plot$Test == 'GeRS_multi_pT',]$Val_Label_2, parse=T, vjust=1, hjust=0,show.legend = FALSE) +
          scale_colour_op() +
          labs(y='Correlation', x='') +
          ylim(NA,0.6) +
          theme_half_open() +
          theme(legend.title=element_blank(),legend.position="top") +
          background_grid(major = 'x', minor = 'x') +
          coord_flip()

Plot_2<-ggplot(All_res_plot[All_res_plot$Test == 'GeRS_multi_tissue',], aes(x=Phenotype, y=R, fill=Model)) +
          geom_bar(stat="identity", position=position_dodge()) +
          geom_text(aes(y=R+0.04, colour=Sig), label=All_res_plot[All_res_plot$Test == 'GeRS_multi_tissue',]$Val_Label_1, parse=T, vjust=-0.5, hjust=0,show.legend = FALSE) +
          geom_text(aes(y=R+0.04, colour=Sig), label=All_res_plot[All_res_plot$Test == 'GeRS_multi_tissue',]$Val_Label_2, parse=T, vjust=1, hjust=0,show.legend = FALSE) +
          scale_colour_op() +
          labs(y='Correlation', x='') +
          ylim(NA,0.6) +
          theme_half_open() +
          theme(legend.title=element_blank(),legend.position="top") +
          background_grid(major = 'x', minor = 'x') +
          coord_flip()

Plot_3<-ggplot(All_res_plot[All_res_plot$Test == 'PRS_and_GeRS',], aes(x=Phenotype, y=R, fill=Model)) +
          geom_bar(stat="identity", position=position_dodge()) +
          geom_text(aes(y=R+0.04, colour=Sig), label=All_res_plot[All_res_plot$Test == 'PRS_and_GeRS',]$Val_Label_1, parse=T, vjust=-0.5, hjust=0,show.legend = FALSE) +
          geom_text(aes(y=R+0.04, colour=Sig), label=All_res_plot[All_res_plot$Test == 'PRS_and_GeRS',]$Val_Label_2, parse=T, vjust=1, hjust=0,show.legend = FALSE) +
          scale_colour_op() +
          labs(y='Correlation', x='') +
          ylim(NA,0.6) +
          theme_half_open() +
          theme(legend.title=element_blank(),legend.position="top") +
          background_grid(major = 'x', minor = 'x') +
          coord_flip()

Plot_4<-ggplot(All_res_plot[All_res_plot$Test == 'Strat_PRS',], aes(x=Phenotype, y=R, fill=Model)) +
          geom_bar(stat="identity", position=position_dodge()) +
          geom_text(aes(y=R+0.04, colour=Sig), label=All_res_plot[All_res_plot$Test == 'Strat_PRS',]$Val_Label_1, parse=T, vjust=-0.5, hjust=0,show.legend = FALSE) +
          geom_text(aes(y=R+0.04, colour=Sig), label=All_res_plot[All_res_plot$Test == 'Strat_PRS',]$Val_Label_2, parse=T, vjust=1, hjust=0,show.legend = FALSE) +
          scale_colour_op() +
          labs(y='Correlation', x='') +
          ylim(NA,0.6) +
          theme_half_open() +
          theme(legend.title=element_blank(),legend.position="top") +
          background_grid(major = 'x', minor = 'x') +
          coord_flip()

Plot_5<-ggplot(All_res_plot[All_res_plot$Test == 'PRScs_and_GeRS',], aes(x=Phenotype, y=R, fill=Model)) +
          geom_bar(stat="identity", position=position_dodge()) +
          geom_text(aes(y=R+0.04, colour=Sig), label=All_res_plot[All_res_plot$Test == 'PRScs_and_GeRS',]$Val_Label_1, parse=T, vjust=-0.5, hjust=0,show.legend = FALSE) +
          geom_text(aes(y=R+0.04, colour=Sig), label=All_res_plot[All_res_plot$Test == 'PRScs_and_GeRS',]$Val_Label_2, parse=T, vjust=1, hjust=0,show.legend = FALSE) +
          scale_colour_op() +
          labs(y='Correlation', x='') +
          ylim(NA,0.6) +
          theme_half_open() +
          theme(legend.title=element_blank(),legend.position="top") +
          background_grid(major = 'x', minor = 'x') +
          coord_flip()

png('/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/GeRS_tests_summary_UKBB.png', units='px', res=300, width=3000, height=3500)
  plot_grid(Plot_1,Plot_2,Plot_3, Plot_5, labels = "AUTO")
dev.off()

Plot Rheumatoid Arthritis sensitivity analysis

# Read in the pT+clump (with MHC clump) results
res_3<-read.table('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/RheuArth/Association_withPRS_and_GeRSs/UKBB.w_hm3.AllTissue.RHEU01.EUR-GeRSs.EUR-PRSs.pt_clump.pred_comp.txt', header=T, stringsAsFactors=F)
res_4<-read.table('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/RheuArth/Association_withPRS_and_GeRSs/UKBB.w_hm3.AllTissue.RHEU01.noMHCClump.EUR-GeRSs.EUR-PRSs.pt_clump.pred_comp.txt', header=T, stringsAsFactors=F)
res_5<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/RheuArth/Association_withPRS_and_GeRSs/UKBB.w_hm3.AllTissue.RHEU01.EUR-GeRSs.EUR-PRSs.PRScs.pred_comp.txt'), header=T, stringsAsFactors=F)

res_table<-data.frame(Test=c('PRS_and_GeRS','PRS_noMHCClump_and_GeRS','PRScs_and_GeRS'),        
                        do.call(rbind,list( res_3[8,],
                                                    res_4[8,],
                                                    res_5[8,])))

# Calculate percentage difference
res_table$R_diff_perc<-res_table$R_diff/res_table$Model_1_R*100

res_table$Phenotype<-'RheuArth'
res_table<-res_table[,c('Phenotype',names(res_table)[-length(names(res_table))])]

write.csv(res_table, '/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/GeRS_tests_RheuArth_withnoMHCClump.csv', row.names=F, quote=F)

Show Rheumatoid Arthritis TWAS results

library(data.table)

source('/users/k1806347/brc_scratch/Software/MyGit/GenoPred/config_used/Pipeline_prep.config')

res<-fread(paste0(TWAS_rep,'/RHEU01/RHEU01_res_GW.txt'))

# Sort by abs(TWAS.Z
res<-res[order(-abs(res$TWAS.Z)),]
res<-res[,c('FILE','CHR','P0','P1','PANEL','ID','TWAS.Z','TWAS.P')]
res$FILE<-gsub('.*/','',res$FILE)

# Restrict to top 10% of TWAS.Z
res<-res[abs(res$TWAS.Z) >= quantile(abs(res$TWAS.Z), probs=0.99,na.rm=T),]

res$TWAS.P<-as.character(res$TWAS.P)
res$TWAS.P[res$TWAS.P == '0']<-'<1e-320'

write.csv(res, '/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/Top_TWAS_res_RheuArth.csv', row.names=F, quote=F)

Plot comparison results (PP4+clump)

#####
# Compare results from each approach
#####

pheno<-c('Depression','Intelligence','BMI','Height','T2D','CAD','IBD','RheuArth')
gwas<-c('DEPR06','COLL01','BODY03','HEIG03','DIAB05','COAD01','CROH01','RHEU01')

res<-list()
for(i in 1:length(gwas)){
res_2<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/',pheno[i],'/Association_withGeRSs/UKBB.w_hm3.AllTissue.',gwas[i],'.EUR-GeRSs_PP4.pred_comp.txt'), header=T, stringsAsFactors=F)
res_2<-res_2[res_2$Model_1 == 'All',]
res_2<-res_2[res_2$Model_2 != 'All',]
res_3<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/',pheno[i],'/Association_withPRS_and_GeRSs/UKBB.w_hm3.AllTissue.',gwas[i],'.EUR-GeRSs_PP4.EUR-PRSs.pt_clump.pred_comp.txt'), header=T, stringsAsFactors=F)

res[[pheno[i]]]<-data.frame(Test=c('GeRS_multi_tissue','PRS_and_GeRS'),     
                        do.call(rbind,list( res_2[res_2$Model_2_R == max(res_2$Model_2_R),],
                                                    res_3[8,])))
}

res_table<-do.call(rbind, res)
res_table$Phenotype<-gsub('\\..*','',rownames(res_table))
res_table<-res_table[,c('Phenotype',names(res_table)[-length(names(res_table))])]
write.csv(res_table, '/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/GeRS_PP4_tests_summary.csv', row.names=F, quote=F)

####
# Plot the R2 when using PRS only, and using PRS + multi-tissue GeRS
####

# Organise the results
res_plot<-list()
for(i in 1:length(gwas)){
tmp_res<-res[[pheno[i]]]

tmp_res$R_diff_pval<-format(tmp_res$R_diff_pval, scientific = TRUE, digits = 2)
tmp_res$R_diff_pval<-gsub('e-','*x*10^-',tmp_res$R_diff_pval)

tmp_res_Model_1<-tmp_res[,grepl('Test|Model_1|R_diff',names(tmp_res))]
names(tmp_res_Model_1)<-c('Test','Model','R','R_diff','R_diff_pval')
tmp_res_Model_2<-tmp_res[,grepl('Test|Model_2|R_diff',names(tmp_res))]
names(tmp_res_Model_2)<-c('Test','Model','R','R_diff','R_diff_pval')
tmp_res_Model_2$R_diff<-NA
tmp_res_Model_2$R_diff_pval<-NA

tmp_res_plot<-rbind(tmp_res_Model_1,tmp_res_Model_2)
tmp_res_plot$Phenotype<-pheno[i]

res_plot[[pheno[i]]]<-tmp_res_plot
}

# Combine results for each phenotype and prepare for plotting
All_res_plot<-do.call(rbind, res_plot)

All_res_plot$Test<-factor(All_res_plot$Test, levels=res[[1]]$Test)
All_res_plot$Phenotype<-factor(All_res_plot$Phenotype, level=unique(All_res_plot$Phenotype))
All_res_plot<-All_res_plot[order(All_res_plot$Phenotype,All_res_plot$Test),]

All_res_plot$Val_Label_1<-NA
All_res_plot$Val_Label_1[!is.na(All_res_plot$R_diff)]<-paste0('Diff == ',round(All_res_plot$R_diff[!is.na(All_res_plot$R_diff)],3))

All_res_plot$Val_Label_2<-NA
All_res_plot$Val_Label_2[!is.na(All_res_plot$R_diff)]<-paste0('italic(p) == ',All_res_plot$R_diff_pval[!is.na(All_res_plot$R_diff)])

All_res_plot$Model[!All_res_plot$Model == 'All' & All_res_plot$Test == 'GeRS_multi_tissue']<-'GeRS PP4 Best Tissue   '
All_res_plot$Model[All_res_plot$Model == 'All' & All_res_plot$Test == 'GeRS_multi_tissue']<-'GeRS PP4 Multi Tissue'

All_res_plot$Model[!All_res_plot$Model == 'All' & All_res_plot$Test == 'PRS_and_GeRS']<-'PRS only   '
All_res_plot$Model[All_res_plot$Model == 'All' & All_res_plot$Test == 'PRS_and_GeRS']<-'PRS + GeRS PP4'

All_res_plot$Model<-factor(All_res_plot$Model, levels=c("GeRS PP4 Best Tissue   ","GeRS PP4 Multi Tissue","PRS only   ","PRS + GeRS PP4"))

library(ggplot2)
library(cowplot)

# Plot results
Plot_2<-ggplot(All_res_plot[All_res_plot$Test == 'GeRS_multi_tissue',], aes(x=Phenotype, y=R, fill=Model)) +
          geom_bar(stat="identity", position=position_dodge()) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'GeRS_multi_tissue',]$Val_Label_1, parse=T, vjust=-0.5, hjust=0) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'GeRS_multi_tissue',]$Val_Label_2, parse=T, vjust=1, hjust=0) +
          labs(y='Correlation', x='') +
          ylim(NA,0.6) +
          theme_half_open() +
          theme(legend.title=element_blank(),legend.position="top") +
          background_grid(major = 'x', minor = 'x') +
          coord_flip()

Plot_3<-ggplot(All_res_plot[All_res_plot$Test == 'PRS_and_GeRS',], aes(x=Phenotype, y=R, fill=Model)) +
          geom_bar(stat="identity", position=position_dodge()) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'PRS_and_GeRS',]$Val_Label_1, parse=T, vjust=-0.5, hjust=0) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'PRS_and_GeRS',]$Val_Label_2, parse=T, vjust=1, hjust=0) +
          labs(y='Correlation', x='') +
          ylim(NA,0.6) +
          theme_half_open() +
          theme(legend.title=element_blank(),legend.position="top") +
          background_grid(major = 'x', minor = 'x') +
          coord_flip()

png('/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/GeRS_PP4_tests_summary_UKBB.png', units='px', res=300, width=3500, height=2000)
  plot_grid(Plot_2,Plot_3, labels = "AUTO")
dev.off()

Plot comparison results (Tissue Specific)

#####
# Compare results from each approach
#####

pheno<-c('Depression','Intelligence','BMI','Height','T2D','CAD','IBD','RheuArth')
gwas<-c('DEPR06','COLL01','BODY03','HEIG03','DIAB05','COAD01','CROH01','RHEU01')

res<-list()
for(i in 1:length(gwas)){
res_2<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/',pheno[i],'/Association_withGeRSs/UKBB.w_hm3.AllTissue.TissueSpecific.',gwas[i],'.EUR-GeRSs.pred_comp.txt'), header=T, stringsAsFactors=F)
res_2<-res_2[res_2$Model_1 == 'All',]
res_2<-res_2[res_2$Model_2 != 'All',]
res_3<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/',pheno[i],'/Association_withPRS_and_GeRSs/UKBB.w_hm3.AllTissue.TissueSpecific.',gwas[i],'.EUR-GeRSs.EUR-PRSs.pt_clump.pred_comp.txt'), header=T, stringsAsFactors=F)

res[[pheno[i]]]<-data.frame(Test=c('GeRS_multi_tissue','PRS_and_GeRS'),     
                        do.call(rbind,list( res_2[res_2$Model_2_R == max(res_2$Model_2_R),],
                                                    res_3[8,])))
}

res_table<-do.call(rbind, res)
res_table$Phenotype<-gsub('\\..*','',rownames(res_table))
res_table<-res_table[,c('Phenotype',names(res_table)[-length(names(res_table))])]
write.csv(res_table, '/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/GeRS_TissueSpecific_tests_summary.csv', row.names=F, quote=F)

####
# Plot the R2 when using PRS only, and using PRS + multi-tissue GeRS
####

# Organise the results
res_plot<-list()
for(i in 1:length(gwas)){
tmp_res<-res[[pheno[i]]]

tmp_res$R_diff_pval<-format(tmp_res$R_diff_pval, scientific = TRUE, digits = 2)
tmp_res$R_diff_pval<-gsub('e-','*x*10^-',tmp_res$R_diff_pval)

tmp_res_Model_1<-tmp_res[,grepl('Test|Model_1|R_diff',names(tmp_res))]
names(tmp_res_Model_1)<-c('Test','Model','R','R_diff','R_diff_pval')
tmp_res_Model_2<-tmp_res[,grepl('Test|Model_2|R_diff',names(tmp_res))]
names(tmp_res_Model_2)<-c('Test','Model','R','R_diff','R_diff_pval')
tmp_res_Model_2$R_diff<-NA
tmp_res_Model_2$R_diff_pval<-NA

tmp_res_plot<-rbind(tmp_res_Model_1,tmp_res_Model_2)
tmp_res_plot$Phenotype<-pheno[i]

res_plot[[pheno[i]]]<-tmp_res_plot
}

# Combine results for each phenotype and prepare for plotting
All_res_plot<-do.call(rbind, res_plot)

All_res_plot$Test<-factor(All_res_plot$Test, levels=res[[1]]$Test)
All_res_plot$Phenotype<-factor(All_res_plot$Phenotype, level=unique(All_res_plot$Phenotype))
All_res_plot<-All_res_plot[order(All_res_plot$Phenotype,All_res_plot$Test),]

All_res_plot$Val_Label_1<-NA
All_res_plot$Val_Label_1[!is.na(All_res_plot$R_diff)]<-paste0('Diff == ',round(All_res_plot$R_diff[!is.na(All_res_plot$R_diff)],3))

All_res_plot$Val_Label_2<-NA
All_res_plot$Val_Label_2[!is.na(All_res_plot$R_diff)]<-paste0('italic(p) == ',All_res_plot$R_diff_pval[!is.na(All_res_plot$R_diff)])

All_res_plot$Model[!All_res_plot$Model == 'All' & All_res_plot$Test == 'GeRS_multi_tissue']<-'GeRS TissueSpecific\nBest Tissue   '
All_res_plot$Model[All_res_plot$Model == 'All' & All_res_plot$Test == 'GeRS_multi_tissue']<-'GeRS TissueSpecific\nMulti Tissue'

All_res_plot$Model[!All_res_plot$Model == 'All' & All_res_plot$Test == 'PRS_and_GeRS']<-'PRS only   '
All_res_plot$Model[All_res_plot$Model == 'All' & All_res_plot$Test == 'PRS_and_GeRS']<-'PRS + GeRS TissueSpecific'

All_res_plot$Model<-factor(All_res_plot$Model, levels=c("GeRS TissueSpecific\nBest Tissue   ","GeRS TissueSpecific\nMulti Tissue","PRS only   ","PRS + GeRS TissueSpecific"))

library(ggplot2)
library(cowplot)

# Plot results
Plot_2<-ggplot(All_res_plot[All_res_plot$Test == 'GeRS_multi_tissue',], aes(x=Phenotype, y=R, fill=Model)) +
          geom_bar(stat="identity", position=position_dodge()) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'GeRS_multi_tissue',]$Val_Label_1, parse=T, vjust=-0.5, hjust=0) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'GeRS_multi_tissue',]$Val_Label_2, parse=T, vjust=1, hjust=0) +
          labs(y='Correlation', x='') +
          ylim(NA,0.6) +
          theme_half_open() +
          theme(legend.title=element_blank(),legend.position="top") +
          background_grid(major = 'x', minor = 'x') +
          coord_flip()

Plot_3<-ggplot(All_res_plot[All_res_plot$Test == 'PRS_and_GeRS',], aes(x=Phenotype, y=R, fill=Model)) +
          geom_bar(stat="identity", position=position_dodge()) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'PRS_and_GeRS',]$Val_Label_1, parse=T, vjust=-0.5, hjust=0) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'PRS_and_GeRS',]$Val_Label_2, parse=T, vjust=1, hjust=0) +
          labs(y='Correlation', x='') +
          ylim(NA,0.6) +
          theme_half_open() +
          theme(legend.title=element_blank(),legend.position="top") +
          background_grid(major = 'x', minor = 'x') +
          coord_flip()

png('/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/GeRS_TissueSpecific_tests_summary_UKBB.png', units='px', res=300, width=3500, height=2000)
  plot_grid(Plot_2,Plot_3, labels = "AUTO")
dev.off()

Compare stratified PRS to multi-tissue GeRS

# Plot the results of the stratified PRS against Multi-tissue GeRS
# And look at the variance exaplained by each tissue
pheno<-c('Depression','Intelligence','BMI','Height','T2D','CAD','IBD','RheuArth')
gwas<-c('DEPR06','COLL01','BODY03','HEIG03','DIAB05','COAD01','CROH01','RHEU01')

res<-list()
crossTissue<-list()

for(i in 1:length(gwas)){
res_GeRS<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/',pheno[i],'/Association_withGeRSs/UKBB.w_hm3.AllTissue.',gwas[i],'.EUR-GeRSs.pred_eval.txt'), header=T, stringsAsFactors=F)

res_GeRS<-res_GeRS[dim(res_GeRS)[1],]

res_GeRS_coloc<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/',pheno[i],'/Association_withGeRSs/UKBB.w_hm3.AllTissue.',gwas[i],'.EUR-GeRSs_pT_withColoc.pred_eval.txt'), header=T, stringsAsFactors=F)

res_GeRS_coloc<-res_GeRS_coloc[dim(res_GeRS_coloc)[1],]

res_stratPRS<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/',pheno[i],'/Association_withPRSs/UKBB.w_hm3.',gwas[i],'.EUR-PRSs-TWAS_gene_stratified.pred_eval.txt'), header=T, stringsAsFactors=F)

res_stratPRS<-res_stratPRS[2,]

res_GWPRS<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/',pheno[i],'/Association_withPRSs/UKBB.w_hm3.',gwas[i],'.EUR-PRSs.pred_eval.txt'), header=T, stringsAsFactors=F)
res_GWPRS<-res_GWPRS[dim(res_GWPRS)[1],]

res_all<-do.call(rbind, list(res_GeRS, res_GeRS_coloc, res_stratPRS, res_GWPRS))
res_all$Method<-c('GeRS',"GeRS (coloc)","PRS (Gene)",'PRS')
res_all$Phenotype<-pheno[i]

res_all<-res_all[,c('Model','R','SE','P','N','Method','Phenotype')]

res[[pheno[i]]]<-res_all
}

res_table<-do.call(rbind, res)
res_table<-res_table[,c('Phenotype','Method','R','SE')]

write.csv(res_table, '/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/StratPRS_comp_summary.csv', row.names=F, quote=F)

library(ggplot2)
library(cowplot)
# Plot comparison across PRS, stratified PRS and GeRS
res_table$Phenotype<-factor(res_table$Phenotype, level=unique(res_table$Phenotype))

png('/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/StratPRS_comp_UKBB.png', units='px', res=300, width=1500, height=1000)

ggplot(res_table, aes(x=Phenotype, y=R, fill=Method)) +
          geom_bar(stat="identity", position=position_dodge(0.9)) +
          geom_errorbar(aes(ymin=R-SE, ymax=R+SE), width=.2,
                 position=position_dodge(0.9)) +
          labs(y="Correlation (SE)", x='') +
              ylim(0,0.4) +
          theme_half_open() +
          theme(axis.text.x = element_text(angle = 45, hjust = 1), legend.position="top", legend.justification = c(0.5, 0), legend.title=element_blank()) +
          guides(fill=guide_legend(title.hjust =0.5)) +
          background_grid(major = 'y', minor = 'y')

dev.off()

# Make black and white version
png('/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/StratPRS_comp_UKBB_bw.png', units='px', res=300, width=1500, height=1000)

ggplot(res_table, aes(x=Phenotype, y=R, fill=Method)) +
          geom_bar(stat="identity", position=position_dodge(0.9)) +
          scale_fill_grey() +
          geom_errorbar(aes(ymin=R-SE, ymax=R+SE), width=.2,
                 position=position_dodge(0.9)) +
          labs(y="Correlation (SE)", x='') +
              ylim(0,0.4) +
          theme_half_open() +
          theme(axis.text.x = element_text(angle = 45, hjust = 1), legend.position="top", legend.justification = c(0.5, 0), legend.title=element_blank()) +
          guides(fill=guide_legend(title.hjust =0.5)) +
          background_grid(major = 'y', minor = 'y')

dev.off()

# Make the plot without the coloc result
png('/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/StratPRS_comp_nocoloc_UKBB.png', units='px', res=300, width=1500, height=1000)

ggplot(res_table[(res_table$Method %in% c('GeRS','PRS',"PRS (Gene)")),], aes(x=Phenotype, y=R, fill=Method)) +
          geom_bar(stat="identity", position=position_dodge(0.9)) +
          geom_errorbar(aes(ymin=R-SE, ymax=R+SE), width=.2,
                 position=position_dodge(0.9)) +
          labs(y="Correlation (SE)", x='') +
              ylim(0,0.4) +
          theme_half_open() +
          theme(axis.text.x = element_text(angle = 45, hjust = 1), legend.position="top", legend.justification = c(0.5, 0), legend.title=element_blank()) +
          guides(fill=guide_legend(title.hjust =0.5)) +
          background_grid(major = 'y', minor = 'y')

dev.off()

# Make the plot with just PRS and GeRS
png('/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/StratPRS_comp_justPRSGeRS_UKBB.png', units='px', res=300, width=1500, height=1000)

ggplot(res_table[(res_table$Method %in% c('GeRS','PRS')),], aes(x=Phenotype, y=R, fill=Method)) +
          geom_bar(stat="identity", position=position_dodge(0.9)) +
          geom_errorbar(aes(ymin=R-SE, ymax=R+SE), width=.2,
                 position=position_dodge(0.9)) +
          labs(y="Correlation (SE)", x='') +
              ylim(0,0.4) +
          theme_half_open() +
          theme(axis.text.x = element_text(angle = 45, hjust = 1), legend.position="top", legend.justification = c(0.5, 0), legend.title=element_blank()) +
          guides(fill=guide_legend(title.hjust =0.5)) +
          background_grid(major = 'y', minor = 'y')

dev.off()

Compare GeRS to PP4 and TissueSpecific GeRS

# Plot the results of the stratified PRS against Multi-tissue GeRS
# And look at the variance exaplained by each tissue
pheno<-c('Depression','Intelligence','BMI','Height','T2D','CAD','IBD','RheuArth')
gwas<-c('DEPR06','COLL01','BODY03','HEIG03','DIAB05','COAD01','CROH01','RHEU01')

res<-list()
crossTissue<-list()

for(i in 1:length(gwas)){
res_GeRS<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/',pheno[i],'/Association_withGeRSs/UKBB.w_hm3.AllTissue.',gwas[i],'.EUR-GeRSs.pred_eval.txt'), header=T, stringsAsFactors=F)

res_GeRS_all<-res_GeRS[dim(res_GeRS)[1],]
res_GeRS<-res_GeRS[-dim(res_GeRS)[1],]
res_GeRS_best<-res_GeRS[which(res_GeRS$R == max(res_GeRS$R)),]

res_GeRS_coloc<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/',pheno[i],'/Association_withGeRSs/UKBB.w_hm3.AllTissue.',gwas[i],'.EUR-GeRSs_pT_withColoc.pred_eval.txt'), header=T, stringsAsFactors=F)

res_GeRS_coloc_all<-res_GeRS_coloc[dim(res_GeRS_coloc)[1],]
res_GeRS_coloc<-res_GeRS_coloc[-dim(res_GeRS_coloc)[1],]
res_GeRS_coloc_best<-res_GeRS_coloc[which(res_GeRS_coloc$R == max(res_GeRS_coloc$R)),]

res_GeRS_TS<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/',pheno[i],'/Association_withGeRSs/UKBB.w_hm3.AllTissue.TissueSpecific.',gwas[i],'.EUR-GeRSs.pred_eval.txt'), header=T, stringsAsFactors=F)

res_GeRS_TS_all<-res_GeRS_TS[dim(res_GeRS_TS)[1],]
res_GeRS_TS<-res_GeRS_TS[-dim(res_GeRS_TS)[1],]
res_GeRS_TS_best<-res_GeRS_TS[which(res_GeRS_TS$R == max(res_GeRS_TS$R)),]

res_all<-do.call(rbind, list(res_GeRS_best,res_GeRS_all,res_GeRS_coloc_best,res_GeRS_coloc_all,res_GeRS_TS_best, res_GeRS_TS_all))
res_all$Method<-c("GeRS (best)","GeRS (all)","GeRS coloc (best)","GeRS coloc (all)","GeRS TS (best)","GeRS TS (all)")

res_all$Phenotype<-pheno[i]

res_all<-res_all[,c('Model','R','SE','P','N','Method','Phenotype')]

res[[pheno[i]]]<-res_all
}

res_table<-do.call(rbind, res)
res_table<-res_table[,c('Phenotype','Method','R','SE')]

write.csv(res_table, '/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/GeRS_coloc_TissueSpecific_comp_summary.csv', row.names=F, quote=F)

library(ggplot2)
library(cowplot)
# Plot comparison across GeRS
res_table$Phenotype<-factor(res_table$Phenotype, level=unique(res_table$Phenotype))

res_table$Method<-factor(res_table$Method, levels=c("GeRS (best)","GeRS (all)","GeRS coloc (best)","GeRS coloc (all)","GeRS TS (best)","GeRS TS (all)"))
  
png('/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/GeRS_coloc_TissueSpecific_comp_UKBB.png', units='px', res=300, width=2000, height=1000)

ggplot(res_table, aes(x=Phenotype, y=R, fill=Method)) +
          geom_bar(stat="identity", position=position_dodge(0.9)) +
          geom_errorbar(aes(ymin=R-SE, ymax=R+SE), width=.2,
                 position=position_dodge(0.9)) +
          labs(y="Correlation (SE)", x='') +
              ylim(0,0.3) +
          theme_half_open() +
          theme(axis.text.x = element_text(angle = 45, hjust = 1), legend.position="top", legend.justification = c(0.5, 0), legend.title=element_blank()) +
          guides(fill=guide_legend(title.hjust =0.5)) +
          background_grid(major = 'y', minor = 'y')

dev.off()

Plot GeRS across tissues

pheno<-c('Depression','Intelligence','BMI','Height','T2D','CAD','IBD','RheuArth')
gwas<-c('DEPR06','COLL01','BODY03','HEIG03','DIAB05','COAD01','CROH01','RHEU01')

crossTissue<-list()

for(i in 1:length(gwas)){
res_GeRS<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/',pheno[i],'/Association_withGeRSs/UKBB.w_hm3.AllTissue.',gwas[i],'.EUR-GeRSs.pred_eval.txt'), header=T, stringsAsFactors=F)


crossTissue_i<-res_GeRS

crossTissue_i$Phenotype<-pheno[i]

crossTissue_i<-crossTissue_i[,c('Phenotype','Model','R','SE','P')]

crossTissue_i$Model<-gsub('_group','',crossTissue_i$Model)
crossTissue_i$Panel<-crossTissue_i$Model

crossTissue_i$Model<-gsub('CMC.BRAIN.RNASEQ','CMC DLPFC',crossTissue_i$Model)
crossTissue_i$Model<-gsub('SPLICING','Splicing',crossTissue_i$Model)
crossTissue_i$Model<-gsub('NTR.BLOOD.RNAARR','NTR Blood',crossTissue_i$Model)
crossTissue_i$Model<-gsub('YFS.BLOOD.RNAARR','YFS Blood',crossTissue_i$Model)
crossTissue_i$Model<-gsub('METSIM.ADIPOSE.RNASEQ','METSIM Adipose',crossTissue_i$Model)
crossTissue_i$Model<-gsub('\\.',' ',crossTissue_i$Model)
crossTissue_i$Model[!grepl('CMC|NTR|YFS|METSIM|All', crossTissue_i$Model)]<-paste0('GTEx ',crossTissue_i$Model[!grepl('CMC|NTR|YFS|METSIM|All', crossTissue_i$Model)])
crossTissue_i$Model<-gsub('Brain', '', crossTissue_i$Model)
crossTissue_i$Model <- gsub('Anterior cingulate cortex', 'ACC', crossTissue_i$Model)
crossTissue_i$Model <- gsub('basal ganglia', '', crossTissue_i$Model)
crossTissue_i$Model <- gsub('BA9', '', crossTissue_i$Model)
crossTissue_i$Model <- gsub('BA24', '', crossTissue_i$Model)
crossTissue_i$Model <- gsub('  ', ' ', crossTissue_i$Model)
crossTissue_i$Model_short<-substr(crossTissue_i$Model, start = 1, stop = 18)  #start the name at the first character and stop at the 25th
crossTissue_i$Model_short[nchar(crossTissue_i$Model) > 18]<-paste0(crossTissue_i$Model_short[nchar(crossTissue_i$Model) > 18], "...")

crossTissue_i$R_scaled<-scale(crossTissue_i$R)

crossTissue[[pheno[i]]]<-crossTissue_i

}

crossTissue_table<-do.call(rbind, crossTissue)
crossTissue_table<-crossTissue_table[,c('Phenotype','Model','Model_short','R','SE','Panel','R_scaled')]

library(ggplot2)
library(cowplot)

plot_list<-list()
for(i in 1:length(gwas)){
  tmp<-crossTissue[[pheno[i]]]
  tmp$Model_short<-factor(tmp$Model_short, level=tmp$Model_short[rev(order(tmp$R))])
  tmp$Colour<-ifelse(tmp$Model_short == 'All', 'All', 'Single')

plot_list[[pheno[i]]]<-ggplot(tmp, aes(x=Model_short, y=R, fill=Colour)) +
          geom_bar(stat="identity", position=position_dodge(0.9)) +
          geom_errorbar(aes(ymin=R-SE, ymax=R+SE), width=.2,
                 position=position_dodge(0.9)) +
          labs(y="Correlation (SE)", x='', title=pheno[i]) +
          theme_half_open() +
          theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust=0.5, size=10), legend.position = "none") +
          background_grid(major = 'y', minor = 'y')
}

png('/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/GeRS_Tissue_comp_UKBB.png', units='px', res=300, width=3000, height=10000)
  plot_grid(plotlist=plot_list, ncol=1)
dev.off()

# Estimate the correlation between SNP-weight set sample size, number of features and predictive utility
weight_info<-fread('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/snp_weights_table.csv')
weight_info$Set<-gsub('_','.',weight_info$Set)
weight_info$Set<-gsub('-','.',weight_info$Set)

crossTissue_table<-merge(crossTissue_table, weight_info, by.x='Panel', by.y='Set')

# Check correlation across 
cor(crossTissue_table$R, crossTissue_table$N_indiv) # 0.1516963
feat_cor<-cor(crossTissue_table$R, crossTissue_table$N_feat) # 0.2879782
cor(crossTissue_table$N_indiv, crossTissue_table$N_feat) # 0.3263912

summary(lm(R ~ N_feat + N_indiv, data=crossTissue_table)) # R2 = 0.08666
# N_indiv effect is non significant when moddeling N_feat
crossTissue_table$R_resid<-resid(lm(R ~ N_feat, data=crossTissue_table))

plot_list<-list()
for(i in 1:length(gwas)){
  crossTissue_table$R_resid[crossTissue_table$Phenotype == pheno[i]]<-scale(crossTissue_table$R_resid[crossTissue_table$Phenotype == pheno[i]])
  tmp<-crossTissue_table[crossTissue_table$Phenotype == pheno[i],]
  tmp$Model_short<-factor(tmp$Model_short, level=tmp$Model_short[rev(order(tmp$R_resid))])
  tmp$Colour<-ifelse(tmp$Model_short == 'All', 'All', 'Single')

plot_list[[pheno[i]]]<-ggplot(tmp, aes(x=Model_short, y=R_resid, fill=Colour)) +
          geom_bar(stat="identity", position=position_dodge(0.9)) +
          labs(y="Residual Correlation", x='', title=pheno[i]) +
          theme_half_open() +
          theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust=0.5, size=10), legend.position = "none") +
          background_grid(major = 'y', minor = 'y')
}

png('/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/GeRS_Tissue_comp_resid_UKBB.png', units='px', res=300, width=3000, height=10000)
  plot_grid(plotlist=plot_list, ncol=1)
dev.off()

# Plot relationship between N_feat and R2 scaled for each phenotype
png('/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/GeRS_Tissue_comp_Nfeat_UKBB.png', units='px', res=300, width=1500, height=1000)
ggplot(crossTissue_table, aes(x=N_feat, R_scaled)) +
  labs(y="Relative prediction", x='Number of features') +
  geom_smooth(method='lm') +
  annotate("text", x=7500, y=-2, label = paste0("italic('r') == ",round(feat_cor,2)), parse=T) +
  geom_point(data=crossTissue_table, aes(x=N_feat, R_scaled, colour=Phenotype)) +
  theme_half_open()
dev.off()

Plot GeRS (PP4+clump) across tissues

pheno<-c('Depression','Intelligence','BMI','Height','T2D','CAD','IBD','RheuArth')
gwas<-c('DEPR06','COLL01','BODY03','HEIG03','DIAB05','COAD01','CROH01','RHEU01')

crossTissue<-list()

for(i in 1:length(gwas)){
res_GeRS<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/',pheno[i],'/Association_withGeRSs/UKBB.w_hm3.AllTissue.',gwas[i],'.EUR-GeRSs_PP4.pred_eval.txt'), header=T, stringsAsFactors=F)

crossTissue_i<-res_GeRS

crossTissue_i$Phenotype<-pheno[i]

crossTissue_i<-crossTissue_i[,c('Phenotype','Model','R','SE','P')]

crossTissue_i$Model<-gsub('_group','',crossTissue_i$Model)
crossTissue_i$Panel<-crossTissue_i$Model

crossTissue_i$Model<-gsub('CMC.BRAIN.RNASEQ','CMC DLPFC',crossTissue_i$Model)
crossTissue_i$Model<-gsub('SPLICING','Splicing',crossTissue_i$Model)
crossTissue_i$Model<-gsub('NTR.BLOOD.RNAARR','NTR Blood',crossTissue_i$Model)
crossTissue_i$Model<-gsub('YFS.BLOOD.RNAARR','YFS Blood',crossTissue_i$Model)
crossTissue_i$Model<-gsub('METSIM.ADIPOSE.RNASEQ','METSIM Adipose',crossTissue_i$Model)
crossTissue_i$Model<-gsub('\\.',' ',crossTissue_i$Model)
crossTissue_i$Model[!grepl('CMC|NTR|YFS|METSIM|All', crossTissue_i$Model)]<-paste0('GTEx ',crossTissue_i$Model[!grepl('CMC|NTR|YFS|METSIM|All', crossTissue_i$Model)])
crossTissue_i$Model<-gsub('Brain', '', crossTissue_i$Model)
crossTissue_i$Model <- gsub('Anterior cingulate cortex', 'ACC', crossTissue_i$Model)
crossTissue_i$Model <- gsub('basal ganglia', '', crossTissue_i$Model)
crossTissue_i$Model <- gsub('BA9', '', crossTissue_i$Model)
crossTissue_i$Model <- gsub('BA24', '', crossTissue_i$Model)
crossTissue_i$Model <- gsub('  ', ' ', crossTissue_i$Model)
crossTissue_i$Model_short<-substr(crossTissue_i$Model, start = 1, stop = 18)  #start the name at the first character and stop at the 25th
crossTissue_i$Model_short[nchar(crossTissue_i$Model) > 18]<-paste0(crossTissue_i$Model_short[nchar(crossTissue_i$Model) > 18], "...")

crossTissue[[pheno[i]]]<-crossTissue_i

}

crossTissue_table<-do.call(rbind, crossTissue)
crossTissue_table<-crossTissue_table[,c('Phenotype','Model','Model_short','R','SE','Panel')]

library(ggplot2)
library(cowplot)

plot_list<-list()
for(i in 1:length(gwas)){
  tmp<-crossTissue[[pheno[i]]]
  tmp$Model_short<-factor(tmp$Model_short, level=tmp$Model_short[rev(order(tmp$R))])
  tmp$Colour<-ifelse(tmp$Model_short == 'All', 'All', 'Single')

plot_list[[pheno[i]]]<-ggplot(tmp, aes(x=Model_short, y=R, fill=Colour)) +
          geom_bar(stat="identity", position=position_dodge(0.9)) +
          geom_errorbar(aes(ymin=R-SE, ymax=R+SE), width=.2,
                 position=position_dodge(0.9)) +
          labs(y="Correlation (SE)", x='', title=pheno[i]) +
          theme_half_open() +
          theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust=0.5, size=10), legend.position = "none") +
          background_grid(major = 'y', minor = 'y')
}

png('/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/GeRS_PP4_Tissue_comp_UKBB.png', units='px', res=300, width=3000, height=10000)
  plot_grid(plotlist=plot_list, ncol=1)
dev.off()

# Estimate the correlation between SNP-weight set sample size, number of features and predictive utility
weight_info<-fread('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/snp_weights_table.csv')
weight_info$Set<-gsub('_','.',weight_info$Set)
weight_info$Set<-gsub('-','.',weight_info$Set)

crossTissue_table<-merge(crossTissue_table, weight_info, by.x='Panel', by.y='Set')

# Check correlation across 
cor(crossTissue_table$R, crossTissue_table$N_indiv) # 0.1289168
cor(crossTissue_table$R, crossTissue_table$N_feat) # 0.2561282
cor(crossTissue_table$N_indiv, crossTissue_table$N_feat) # 0.3263912

summary(lm(R ~ N_feat + N_indiv, data=crossTissue_table)) # R2 = 0.0679
crossTissue_table$R_resid<-resid(lm(R ~ N_feat + N_indiv, data=crossTissue_table))

Plot GeRS (TissueSpecific) across tissues

pheno<-c('Depression','Intelligence','BMI','Height','T2D','CAD','IBD','RheuArth')
gwas<-c('DEPR06','COLL01','BODY03','HEIG03','DIAB05','COAD01','CROH01','RHEU01')

crossTissue<-list()

for(i in 1:length(gwas)){
res_GeRS<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/',pheno[i],'/Association_withGeRSs/UKBB.w_hm3.AllTissue.TissueSpecific.',gwas[i],'.EUR-GeRSs.pred_eval.txt'), header=T, stringsAsFactors=F)

crossTissue_i<-res_GeRS

crossTissue_i$Phenotype<-pheno[i]

crossTissue_i<-crossTissue_i[,c('Phenotype','Model','R','SE','P')]

crossTissue_i$Model<-gsub('_group','',crossTissue_i$Model)

crossTissue_i$Model<-gsub('CMC.BRAIN.RNASEQ','CMC DLPFC',crossTissue_i$Model)
crossTissue_i$Model<-gsub('SPLICING','Splicing',crossTissue_i$Model)
crossTissue_i$Model<-gsub('NTR.BLOOD.RNAARR','NTR Blood',crossTissue_i$Model)
crossTissue_i$Model<-gsub('YFS.BLOOD.RNAARR','YFS Blood',crossTissue_i$Model)
crossTissue_i$Model<-gsub('METSIM.ADIPOSE.RNASEQ','METSIM Adipose',crossTissue_i$Model)
crossTissue_i$Model<-gsub('\\.',' ',crossTissue_i$Model)
crossTissue_i$Model[!grepl('CMC|NTR|YFS|METSIM|All', crossTissue_i$Model)]<-paste0('GTEx ',crossTissue_i$Model[!grepl('CMC|NTR|YFS|METSIM|All', crossTissue_i$Model)])
crossTissue_i$Model<-gsub('Brain', '', crossTissue_i$Model)
crossTissue_i$Model <- gsub('Anterior cingulate cortex', 'ACC', crossTissue_i$Model)
crossTissue_i$Model <- gsub('basal ganglia', '', crossTissue_i$Model)
crossTissue_i$Model <- gsub('BA9', '', crossTissue_i$Model)
crossTissue_i$Model <- gsub('BA24', '', crossTissue_i$Model)
crossTissue_i$Model <- gsub('  ', ' ', crossTissue_i$Model)
crossTissue_i$Model_short<-substr(crossTissue_i$Model, start = 1, stop = 18)  #start the name at the first character and stop at the 25th
crossTissue_i$Model_short[nchar(crossTissue_i$Model) > 18]<-paste0(crossTissue_i$Model_short[nchar(crossTissue_i$Model) > 18], "...")

crossTissue[[pheno[i]]]<-crossTissue_i

}

crossTissue_table<-do.call(rbind, crossTissue)
crossTissue_table<-crossTissue_table[,c('Phenotype','Model','Model_short','R','SE')]

library(ggplot2)
library(cowplot)

plot_list<-list()
for(i in 1:length(gwas)){
  tmp<-crossTissue[[pheno[i]]]
  tmp$Model_short<-factor(tmp$Model_short, level=tmp$Model_short[rev(order(tmp$R))])
  tmp$Colour<-ifelse(tmp$Model_short == 'All', 'All', 'Single')

plot_list[[pheno[i]]]<-ggplot(tmp, aes(x=Model_short, y=R, fill=Colour)) +
          geom_bar(stat="identity", position=position_dodge(0.9)) +
          geom_errorbar(aes(ymin=R-SE, ymax=R+SE), width=.2,
                 position=position_dodge(0.9)) +
          labs(y="Correlation (SE)", x='', title=pheno[i]) +
          theme_half_open() +
          theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust=0.5, size=10), legend.position = "none") +
          background_grid(major = 'y', minor = 'y')
}

png('/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/UKBB_outcomes_for_prediction/GeRS_TissueSpecific_Tissue_comp_UKBB.png', units='px', res=300, width=3000, height=10000)
  plot_grid(plotlist=plot_list, ncol=1)
dev.off()

Show GeRS prediction across p-value thresholds

Predictive utility: R2 y-axis

Predictive utility: R2 y-axis

Predictive utility: R y-axis

Predictive utility: R y-axis

Correlation between GeRS model predictions and observed values in UKBB
Phenotype Weight Model R (SE)
Depression Adipose_Subcutaneous 1e.06 0.023 (0.004)
Depression Adipose_Subcutaneous 1e.05 0.022 (0.004)
Depression Adipose_Subcutaneous 1e.04 0.028 (0.004)
Depression Adipose_Subcutaneous 0.001 0.031 (0.004)
Depression Adipose_Subcutaneous 0.01 0.038 (0.004)
Depression Adipose_Subcutaneous 0.05 0.046 (0.004)
Depression Adipose_Subcutaneous 0.1 0.046 (0.004)
Depression Adipose_Subcutaneous 0.5 0.048 (0.004)
Depression Adipose_Subcutaneous 1 0.048 (0.004)
Depression Adipose_Subcutaneous All 0.05 (0.004)
Depression Adipose_Visceral_Omentum 1e.06 0.008 (0.004)
Depression Adipose_Visceral_Omentum 1e.05 0.012 (0.004)
Depression Adipose_Visceral_Omentum 1e.04 0.02 (0.004)
Depression Adipose_Visceral_Omentum 0.001 0.021 (0.004)
Depression Adipose_Visceral_Omentum 0.01 0.033 (0.004)
Depression Adipose_Visceral_Omentum 0.05 0.04 (0.004)
Depression Adipose_Visceral_Omentum 0.1 0.041 (0.004)
Depression Adipose_Visceral_Omentum 0.5 0.043 (0.004)
Depression Adipose_Visceral_Omentum 1 0.043 (0.004)
Depression Adipose_Visceral_Omentum All 0.043 (0.004)
Depression Adrenal_Gland 1e.06 0.011 (0.004)
Depression Adrenal_Gland 1e.05 0.017 (0.004)
Depression Adrenal_Gland 1e.04 0.026 (0.004)
Depression Adrenal_Gland 0.001 0.036 (0.004)
Depression Adrenal_Gland 0.01 0.045 (0.004)
Depression Adrenal_Gland 0.05 0.049 (0.004)
Depression Adrenal_Gland 0.1 0.048 (0.004)
Depression Adrenal_Gland 0.5 0.044 (0.004)
Depression Adrenal_Gland 1 0.046 (0.004)
Depression Adrenal_Gland All 0.049 (0.004)
Depression Artery_Aorta 1e.06 0.021 (0.004)
Depression Artery_Aorta 1e.05 0.023 (0.004)
Depression Artery_Aorta 1e.04 0.031 (0.004)
Depression Artery_Aorta 0.001 0.031 (0.004)
Depression Artery_Aorta 0.01 0.039 (0.004)
Depression Artery_Aorta 0.05 0.046 (0.004)
Depression Artery_Aorta 0.1 0.047 (0.004)
Depression Artery_Aorta 0.5 0.047 (0.004)
Depression Artery_Aorta 1 0.047 (0.004)
Depression Artery_Aorta All 0.051 (0.004)
Depression Artery_Coronary 1e.06 0.008 (0.004)
Depression Artery_Coronary 1e.05 0.012 (0.004)
Depression Artery_Coronary 1e.04 0.019 (0.004)
Depression Artery_Coronary 0.001 0.023 (0.004)
Depression Artery_Coronary 0.01 0.031 (0.004)
Depression Artery_Coronary 0.05 0.033 (0.004)
Depression Artery_Coronary 0.1 0.035 (0.004)
Depression Artery_Coronary 0.5 0.036 (0.004)
Depression Artery_Coronary 1 0.036 (0.004)
Depression Artery_Coronary All 0.035 (0.004)
Depression Artery_Tibial 1e.06 0.012 (0.004)
Depression Artery_Tibial 1e.05 0.027 (0.004)
Depression Artery_Tibial 1e.04 0.03 (0.004)
Depression Artery_Tibial 0.001 0.034 (0.004)
Depression Artery_Tibial 0.01 0.038 (0.004)
Depression Artery_Tibial 0.05 0.046 (0.004)
Depression Artery_Tibial 0.1 0.047 (0.004)
Depression Artery_Tibial 0.5 0.048 (0.004)
Depression Artery_Tibial 1 0.049 (0.004)
Depression Artery_Tibial All 0.05 (0.004)
Depression Brain_Amygdala 1e.06 0.013 (0.004)
Depression Brain_Amygdala 1e.05 0.017 (0.004)
Depression Brain_Amygdala 1e.04 0.022 (0.004)
Depression Brain_Amygdala 0.001 0.024 (0.004)
Depression Brain_Amygdala 0.01 0.032 (0.004)
Depression Brain_Amygdala 0.05 0.034 (0.004)
Depression Brain_Amygdala 0.1 0.033 (0.004)
Depression Brain_Amygdala 0.5 0.033 (0.004)
Depression Brain_Amygdala 1 0.033 (0.004)
Depression Brain_Amygdala All 0.034 (0.004)
Depression Brain_Anterior_cingulate_cortex_BA24 1e.06 0.013 (0.004)
Depression Brain_Anterior_cingulate_cortex_BA24 1e.05 0.013 (0.004)
Depression Brain_Anterior_cingulate_cortex_BA24 1e.04 0.02 (0.004)
Depression Brain_Anterior_cingulate_cortex_BA24 0.001 0.026 (0.004)
Depression Brain_Anterior_cingulate_cortex_BA24 0.01 0.035 (0.004)
Depression Brain_Anterior_cingulate_cortex_BA24 0.05 0.036 (0.004)
Depression Brain_Anterior_cingulate_cortex_BA24 0.1 0.038 (0.004)
Depression Brain_Anterior_cingulate_cortex_BA24 0.5 0.038 (0.004)
Depression Brain_Anterior_cingulate_cortex_BA24 1 0.038 (0.004)
Depression Brain_Anterior_cingulate_cortex_BA24 All 0.04 (0.004)
Depression Brain_Caudate_basal_ganglia 1e.06 0.02 (0.004)
Depression Brain_Caudate_basal_ganglia 1e.05 0.019 (0.004)
Depression Brain_Caudate_basal_ganglia 1e.04 0.025 (0.004)
Depression Brain_Caudate_basal_ganglia 0.001 0.025 (0.004)
Depression Brain_Caudate_basal_ganglia 0.01 0.033 (0.004)
Depression Brain_Caudate_basal_ganglia 0.05 0.033 (0.004)
Depression Brain_Caudate_basal_ganglia 0.1 0.034 (0.004)
Depression Brain_Caudate_basal_ganglia 0.5 0.038 (0.004)
Depression Brain_Caudate_basal_ganglia 1 0.038 (0.004)
Depression Brain_Caudate_basal_ganglia All 0.041 (0.004)
Depression Brain_Cerebellar_Hemisphere 1e.06 0.025 (0.004)
Depression Brain_Cerebellar_Hemisphere 1e.05 0.026 (0.004)
Depression Brain_Cerebellar_Hemisphere 1e.04 0.029 (0.004)
Depression Brain_Cerebellar_Hemisphere 0.001 0.031 (0.004)
Depression Brain_Cerebellar_Hemisphere 0.01 0.037 (0.004)
Depression Brain_Cerebellar_Hemisphere 0.05 0.039 (0.004)
Depression Brain_Cerebellar_Hemisphere 0.1 0.043 (0.004)
Depression Brain_Cerebellar_Hemisphere 0.5 0.045 (0.004)
Depression Brain_Cerebellar_Hemisphere 1 0.045 (0.004)
Depression Brain_Cerebellar_Hemisphere All 0.047 (0.004)
Depression Brain_Cerebellum 1e.06 0.021 (0.004)
Depression Brain_Cerebellum 1e.05 0.018 (0.004)
Depression Brain_Cerebellum 1e.04 0.028 (0.004)
Depression Brain_Cerebellum 0.001 0.03 (0.004)
Depression Brain_Cerebellum 0.01 0.03 (0.004)
Depression Brain_Cerebellum 0.05 0.04 (0.004)
Depression Brain_Cerebellum 0.1 0.041 (0.004)
Depression Brain_Cerebellum 0.5 0.042 (0.004)
Depression Brain_Cerebellum 1 0.043 (0.004)
Depression Brain_Cerebellum All 0.044 (0.004)
Depression Brain_Cortex 1e.06 0.017 (0.004)
Depression Brain_Cortex 1e.05 0.018 (0.004)
Depression Brain_Cortex 1e.04 0.02 (0.004)
Depression Brain_Cortex 0.001 0.03 (0.004)
Depression Brain_Cortex 0.01 0.033 (0.004)
Depression Brain_Cortex 0.05 0.039 (0.004)
Depression Brain_Cortex 0.1 0.04 (0.004)
Depression Brain_Cortex 0.5 0.048 (0.004)
Depression Brain_Cortex 1 0.048 (0.004)
Depression Brain_Cortex All 0.048 (0.004)
Depression Brain_Frontal_Cortex_BA9 1e.06 0.008 (0.004)
Depression Brain_Frontal_Cortex_BA9 1e.05 0.008 (0.004)
Depression Brain_Frontal_Cortex_BA9 1e.04 0.019 (0.004)
Depression Brain_Frontal_Cortex_BA9 0.001 0.026 (0.004)
Depression Brain_Frontal_Cortex_BA9 0.01 0.035 (0.004)
Depression Brain_Frontal_Cortex_BA9 0.05 0.036 (0.004)
Depression Brain_Frontal_Cortex_BA9 0.1 0.038 (0.004)
Depression Brain_Frontal_Cortex_BA9 0.5 0.036 (0.004)
Depression Brain_Frontal_Cortex_BA9 1 0.036 (0.004)
Depression Brain_Frontal_Cortex_BA9 All 0.038 (0.004)
Depression Brain_Hippocampus 1e.06 0.016 (0.004)
Depression Brain_Hippocampus 1e.05 0.02 (0.004)
Depression Brain_Hippocampus 1e.04 0.025 (0.004)
Depression Brain_Hippocampus 0.001 0.029 (0.004)
Depression Brain_Hippocampus 0.01 0.032 (0.004)
Depression Brain_Hippocampus 0.05 0.031 (0.004)
Depression Brain_Hippocampus 0.1 0.031 (0.004)
Depression Brain_Hippocampus 0.5 0.032 (0.004)
Depression Brain_Hippocampus 1 0.033 (0.004)
Depression Brain_Hippocampus All 0.037 (0.004)
Depression Brain_Hypothalamus 1e.06 0.002 (0.004)
Depression Brain_Hypothalamus 1e.05 0.011 (0.004)
Depression Brain_Hypothalamus 1e.04 0.015 (0.004)
Depression Brain_Hypothalamus 0.001 0.02 (0.004)
Depression Brain_Hypothalamus 0.01 0.031 (0.004)
Depression Brain_Hypothalamus 0.05 0.033 (0.004)
Depression Brain_Hypothalamus 0.1 0.035 (0.004)
Depression Brain_Hypothalamus 0.5 0.036 (0.004)
Depression Brain_Hypothalamus 1 0.037 (0.004)
Depression Brain_Hypothalamus All 0.037 (0.004)
Depression Brain_Nucleus_accumbens_basal_ganglia 1e.06 0.016 (0.004)
Depression Brain_Nucleus_accumbens_basal_ganglia 1e.05 0.014 (0.004)
Depression Brain_Nucleus_accumbens_basal_ganglia 1e.04 0.015 (0.004)
Depression Brain_Nucleus_accumbens_basal_ganglia 0.001 0.023 (0.004)
Depression Brain_Nucleus_accumbens_basal_ganglia 0.01 0.033 (0.004)
Depression Brain_Nucleus_accumbens_basal_ganglia 0.05 0.033 (0.004)
Depression Brain_Nucleus_accumbens_basal_ganglia 0.1 0.035 (0.004)
Depression Brain_Nucleus_accumbens_basal_ganglia 0.5 0.036 (0.004)
Depression Brain_Nucleus_accumbens_basal_ganglia 1 0.037 (0.004)
Depression Brain_Nucleus_accumbens_basal_ganglia All 0.039 (0.004)
Depression Brain_Putamen_basal_ganglia 1e.06 0.017 (0.004)
Depression Brain_Putamen_basal_ganglia 1e.05 0.017 (0.004)
Depression Brain_Putamen_basal_ganglia 1e.04 0.018 (0.004)
Depression Brain_Putamen_basal_ganglia 0.001 0.026 (0.004)
Depression Brain_Putamen_basal_ganglia 0.01 0.033 (0.004)
Depression Brain_Putamen_basal_ganglia 0.05 0.035 (0.004)
Depression Brain_Putamen_basal_ganglia 0.1 0.039 (0.004)
Depression Brain_Putamen_basal_ganglia 0.5 0.039 (0.004)
Depression Brain_Putamen_basal_ganglia 1 0.039 (0.004)
Depression Brain_Putamen_basal_ganglia All 0.04 (0.004)
Depression Brain_Spinal_cord_cervical_c-1 1e.06 0.019 (0.004)
Depression Brain_Spinal_cord_cervical_c-1 1e.05 0.015 (0.004)
Depression Brain_Spinal_cord_cervical_c-1 1e.04 0.022 (0.004)
Depression Brain_Spinal_cord_cervical_c-1 0.001 0.026 (0.004)
Depression Brain_Spinal_cord_cervical_c-1 0.01 0.03 (0.004)
Depression Brain_Spinal_cord_cervical_c-1 0.05 0.031 (0.004)
Depression Brain_Spinal_cord_cervical_c-1 0.1 0.032 (0.004)
Depression Brain_Spinal_cord_cervical_c-1 0.5 0.035 (0.004)
Depression Brain_Spinal_cord_cervical_c-1 1 0.035 (0.004)
Depression Brain_Spinal_cord_cervical_c-1 All 0.036 (0.004)
Depression Brain_Substantia_nigra 1e.06 0.006 (0.004)
Depression Brain_Substantia_nigra 1e.05 0.006 (0.004)
Depression Brain_Substantia_nigra 1e.04 0.017 (0.004)
Depression Brain_Substantia_nigra 0.001 0.02 (0.004)
Depression Brain_Substantia_nigra 0.01 0.028 (0.004)
Depression Brain_Substantia_nigra 0.05 0.031 (0.004)
Depression Brain_Substantia_nigra 0.1 0.03 (0.004)
Depression Brain_Substantia_nigra 0.5 0.031 (0.004)
Depression Brain_Substantia_nigra 1 0.031 (0.004)
Depression Brain_Substantia_nigra All 0.033 (0.004)
Depression Breast_Mammary_Tissue 1e.06 0.013 (0.004)
Depression Breast_Mammary_Tissue 1e.05 0.015 (0.004)
Depression Breast_Mammary_Tissue 1e.04 0.017 (0.004)
Depression Breast_Mammary_Tissue 0.001 0.027 (0.004)
Depression Breast_Mammary_Tissue 0.01 0.036 (0.004)
Depression Breast_Mammary_Tissue 0.05 0.04 (0.004)
Depression Breast_Mammary_Tissue 0.1 0.04 (0.004)
Depression Breast_Mammary_Tissue 0.5 0.042 (0.004)
Depression Breast_Mammary_Tissue 1 0.042 (0.004)
Depression Breast_Mammary_Tissue All 0.043 (0.004)
Depression Cells_EBV-transformed_lymphocytes 1e.06 0.014 (0.004)
Depression Cells_EBV-transformed_lymphocytes 1e.05 0.015 (0.004)
Depression Cells_EBV-transformed_lymphocytes 1e.04 0.013 (0.004)
Depression Cells_EBV-transformed_lymphocytes 0.001 0.021 (0.004)
Depression Cells_EBV-transformed_lymphocytes 0.01 0.025 (0.004)
Depression Cells_EBV-transformed_lymphocytes 0.05 0.032 (0.004)
Depression Cells_EBV-transformed_lymphocytes 0.1 0.034 (0.004)
Depression Cells_EBV-transformed_lymphocytes 0.5 0.041 (0.004)
Depression Cells_EBV-transformed_lymphocytes 1 0.041 (0.004)
Depression Cells_EBV-transformed_lymphocytes All 0.041 (0.004)
Depression Cells_Transformed_fibroblasts 1e.06 0.01 (0.004)
Depression Cells_Transformed_fibroblasts 1e.05 0.014 (0.004)
Depression Cells_Transformed_fibroblasts 1e.04 0.022 (0.004)
Depression Cells_Transformed_fibroblasts 0.001 0.026 (0.004)
Depression Cells_Transformed_fibroblasts 0.01 0.035 (0.004)
Depression Cells_Transformed_fibroblasts 0.05 0.042 (0.004)
Depression Cells_Transformed_fibroblasts 0.1 0.043 (0.004)
Depression Cells_Transformed_fibroblasts 0.5 0.046 (0.004)
Depression Cells_Transformed_fibroblasts 1 0.047 (0.004)
Depression Cells_Transformed_fibroblasts All 0.046 (0.004)
Depression CMC.BRAIN.RNASEQ 1e.06 0.012 (0.004)
Depression CMC.BRAIN.RNASEQ 1e.05 0.017 (0.004)
Depression CMC.BRAIN.RNASEQ 1e.04 0.029 (0.004)
Depression CMC.BRAIN.RNASEQ 0.001 0.031 (0.004)
Depression CMC.BRAIN.RNASEQ 0.01 0.038 (0.004)
Depression CMC.BRAIN.RNASEQ 0.05 0.046 (0.004)
Depression CMC.BRAIN.RNASEQ 0.1 0.048 (0.004)
Depression CMC.BRAIN.RNASEQ 0.5 0.052 (0.004)
Depression CMC.BRAIN.RNASEQ 1 0.052 (0.004)
Depression CMC.BRAIN.RNASEQ All 0.051 (0.004)
Depression CMC.BRAIN.RNASEQ_SPLICING 1e.06 -0.01 (0.004)
Depression CMC.BRAIN.RNASEQ_SPLICING 1e.05 0.003 (0.004)
Depression CMC.BRAIN.RNASEQ_SPLICING 1e.04 0.018 (0.004)
Depression CMC.BRAIN.RNASEQ_SPLICING 0.001 0.028 (0.004)
Depression CMC.BRAIN.RNASEQ_SPLICING 0.01 0.04 (0.004)
Depression CMC.BRAIN.RNASEQ_SPLICING 0.05 0.047 (0.004)
Depression CMC.BRAIN.RNASEQ_SPLICING 0.1 0.048 (0.004)
Depression CMC.BRAIN.RNASEQ_SPLICING 0.5 0.045 (0.004)
Depression CMC.BRAIN.RNASEQ_SPLICING 1 0.047 (0.004)
Depression CMC.BRAIN.RNASEQ_SPLICING All 0.048 (0.004)
Depression Colon_Sigmoid 1e.06 0.001 (0.004)
Depression Colon_Sigmoid 1e.05 0.003 (0.004)
Depression Colon_Sigmoid 1e.04 0.018 (0.004)
Depression Colon_Sigmoid 0.001 0.024 (0.004)
Depression Colon_Sigmoid 0.01 0.036 (0.004)
Depression Colon_Sigmoid 0.05 0.04 (0.004)
Depression Colon_Sigmoid 0.1 0.041 (0.004)
Depression Colon_Sigmoid 0.5 0.043 (0.004)
Depression Colon_Sigmoid 1 0.043 (0.004)
Depression Colon_Sigmoid All 0.044 (0.004)
Depression Colon_Transverse 1e.06 0.005 (0.004)
Depression Colon_Transverse 1e.05 0.001 (0.004)
Depression Colon_Transverse 1e.04 0.024 (0.004)
Depression Colon_Transverse 0.001 0.036 (0.004)
Depression Colon_Transverse 0.01 0.038 (0.004)
Depression Colon_Transverse 0.05 0.041 (0.004)
Depression Colon_Transverse 0.1 0.044 (0.004)
Depression Colon_Transverse 0.5 0.047 (0.004)
Depression Colon_Transverse 1 0.047 (0.004)
Depression Colon_Transverse All 0.05 (0.004)
Depression Esophagus_Gastroesophageal_Junction 1e.06 0.005 (0.004)
Depression Esophagus_Gastroesophageal_Junction 1e.05 0.014 (0.004)
Depression Esophagus_Gastroesophageal_Junction 1e.04 0.028 (0.004)
Depression Esophagus_Gastroesophageal_Junction 0.001 0.028 (0.004)
Depression Esophagus_Gastroesophageal_Junction 0.01 0.032 (0.004)
Depression Esophagus_Gastroesophageal_Junction 0.05 0.035 (0.004)
Depression Esophagus_Gastroesophageal_Junction 0.1 0.036 (0.004)
Depression Esophagus_Gastroesophageal_Junction 0.5 0.042 (0.004)
Depression Esophagus_Gastroesophageal_Junction 1 0.042 (0.004)
Depression Esophagus_Gastroesophageal_Junction All 0.043 (0.004)
Depression Esophagus_Mucosa 1e.06 0.009 (0.004)
Depression Esophagus_Mucosa 1e.05 0.016 (0.004)
Depression Esophagus_Mucosa 1e.04 0.023 (0.004)
Depression Esophagus_Mucosa 0.001 0.033 (0.004)
Depression Esophagus_Mucosa 0.01 0.043 (0.004)
Depression Esophagus_Mucosa 0.05 0.043 (0.004)
Depression Esophagus_Mucosa 0.1 0.044 (0.004)
Depression Esophagus_Mucosa 0.5 0.049 (0.004)
Depression Esophagus_Mucosa 1 0.049 (0.004)
Depression Esophagus_Mucosa All 0.05 (0.004)
Depression Esophagus_Muscularis 1e.06 0.013 (0.004)
Depression Esophagus_Muscularis 1e.05 0.023 (0.004)
Depression Esophagus_Muscularis 1e.04 0.03 (0.004)
Depression Esophagus_Muscularis 0.001 0.031 (0.004)
Depression Esophagus_Muscularis 0.01 0.043 (0.004)
Depression Esophagus_Muscularis 0.05 0.05 (0.004)
Depression Esophagus_Muscularis 0.1 0.049 (0.004)
Depression Esophagus_Muscularis 0.5 0.049 (0.004)
Depression Esophagus_Muscularis 1 0.05 (0.004)
Depression Esophagus_Muscularis All 0.053 (0.004)
Depression Heart_Atrial_Appendage 1e.06 0.012 (0.004)
Depression Heart_Atrial_Appendage 1e.05 0.022 (0.004)
Depression Heart_Atrial_Appendage 1e.04 0.027 (0.004)
Depression Heart_Atrial_Appendage 0.001 0.031 (0.004)
Depression Heart_Atrial_Appendage 0.01 0.033 (0.004)
Depression Heart_Atrial_Appendage 0.05 0.039 (0.004)
Depression Heart_Atrial_Appendage 0.1 0.04 (0.004)
Depression Heart_Atrial_Appendage 0.5 0.043 (0.004)
Depression Heart_Atrial_Appendage 1 0.044 (0.004)
Depression Heart_Atrial_Appendage All 0.045 (0.004)
Depression Heart_Left_Ventricle 1e.06 0.011 (0.004)
Depression Heart_Left_Ventricle 1e.05 0.013 (0.004)
Depression Heart_Left_Ventricle 1e.04 0.022 (0.004)
Depression Heart_Left_Ventricle 0.001 0.026 (0.004)
Depression Heart_Left_Ventricle 0.01 0.035 (0.004)
Depression Heart_Left_Ventricle 0.05 0.039 (0.004)
Depression Heart_Left_Ventricle 0.1 0.036 (0.004)
Depression Heart_Left_Ventricle 0.5 0.043 (0.004)
Depression Heart_Left_Ventricle 1 0.043 (0.004)
Depression Heart_Left_Ventricle All 0.043 (0.004)
Depression Liver 1e.06 0.012 (0.004)
Depression Liver 1e.05 0.017 (0.004)
Depression Liver 1e.04 0.017 (0.004)
Depression Liver 0.001 0.021 (0.004)
Depression Liver 0.01 0.027 (0.004)
Depression Liver 0.05 0.032 (0.004)
Depression Liver 0.1 0.033 (0.004)
Depression Liver 0.5 0.033 (0.004)
Depression Liver 1 0.034 (0.004)
Depression Liver All 0.033 (0.004)
Depression Lung 1e.06 0.018 (0.004)
Depression Lung 1e.05 0.027 (0.004)
Depression Lung 1e.04 0.029 (0.004)
Depression Lung 0.001 0.037 (0.004)
Depression Lung 0.01 0.04 (0.004)
Depression Lung 0.05 0.048 (0.004)
Depression Lung 0.1 0.05 (0.004)
Depression Lung 0.5 0.05 (0.004)
Depression Lung 1 0.05 (0.004)
Depression Lung All 0.052 (0.004)
Depression METSIM.ADIPOSE.RNASEQ 1e.06 0.016 (0.004)
Depression METSIM.ADIPOSE.RNASEQ 1e.05 0.014 (0.004)
Depression METSIM.ADIPOSE.RNASEQ 1e.04 0.024 (0.004)
Depression METSIM.ADIPOSE.RNASEQ 0.001 0.025 (0.004)
Depression METSIM.ADIPOSE.RNASEQ 0.01 0.036 (0.004)
Depression METSIM.ADIPOSE.RNASEQ 0.05 0.039 (0.004)
Depression METSIM.ADIPOSE.RNASEQ 0.1 0.041 (0.004)
Depression METSIM.ADIPOSE.RNASEQ 0.5 0.041 (0.004)
Depression METSIM.ADIPOSE.RNASEQ 1 0.041 (0.004)
Depression METSIM.ADIPOSE.RNASEQ All 0.043 (0.004)
Depression Minor_Salivary_Gland 1e.06 0.014 (0.004)
Depression Minor_Salivary_Gland 1e.05 0.019 (0.004)
Depression Minor_Salivary_Gland 1e.04 0.012 (0.004)
Depression Minor_Salivary_Gland 0.001 0.022 (0.004)
Depression Minor_Salivary_Gland 0.01 0.024 (0.004)
Depression Minor_Salivary_Gland 0.05 0.022 (0.004)
Depression Minor_Salivary_Gland 0.1 0.023 (0.004)
Depression Minor_Salivary_Gland 0.5 0.028 (0.004)
Depression Minor_Salivary_Gland 1 0.027 (0.004)
Depression Minor_Salivary_Gland All 0.03 (0.004)
Depression Muscle_Skeletal 1e.06 -0.013 (0.004)
Depression Muscle_Skeletal 1e.05 0.019 (0.004)
Depression Muscle_Skeletal 1e.04 0.025 (0.004)
Depression Muscle_Skeletal 0.001 0.028 (0.004)
Depression Muscle_Skeletal 0.01 0.033 (0.004)
Depression Muscle_Skeletal 0.05 0.038 (0.004)
Depression Muscle_Skeletal 0.1 0.041 (0.004)
Depression Muscle_Skeletal 0.5 0.041 (0.004)
Depression Muscle_Skeletal 1 0.041 (0.004)
Depression Muscle_Skeletal All 0.041 (0.004)
Depression Nerve_Tibial 1e.06 0.011 (0.004)
Depression Nerve_Tibial 1e.05 0.021 (0.004)
Depression Nerve_Tibial 1e.04 0.03 (0.004)
Depression Nerve_Tibial 0.001 0.039 (0.004)
Depression Nerve_Tibial 0.01 0.042 (0.004)
Depression Nerve_Tibial 0.05 0.046 (0.004)
Depression Nerve_Tibial 0.1 0.046 (0.004)
Depression Nerve_Tibial 0.5 0.049 (0.004)
Depression Nerve_Tibial 1 0.049 (0.004)
Depression Nerve_Tibial All 0.052 (0.004)
Depression NTR.BLOOD.RNAARR 1e.06 -0.004 (0.004)
Depression NTR.BLOOD.RNAARR 1e.05 0.01 (0.004)
Depression NTR.BLOOD.RNAARR 1e.04 0.012 (0.004)
Depression NTR.BLOOD.RNAARR 0.001 0.019 (0.004)
Depression NTR.BLOOD.RNAARR 0.01 0.026 (0.004)
Depression NTR.BLOOD.RNAARR 0.05 0.03 (0.004)
Depression NTR.BLOOD.RNAARR 0.1 0.033 (0.004)
Depression NTR.BLOOD.RNAARR 0.5 0.037 (0.004)
Depression NTR.BLOOD.RNAARR 1 0.037 (0.004)
Depression NTR.BLOOD.RNAARR All 0.036 (0.004)
Depression Ovary 1e.06 0.017 (0.004)
Depression Ovary 1e.05 0.023 (0.004)
Depression Ovary 1e.04 0.027 (0.004)
Depression Ovary 0.001 0.026 (0.004)
Depression Ovary 0.01 0.032 (0.004)
Depression Ovary 0.05 0.031 (0.004)
Depression Ovary 0.1 0.032 (0.004)
Depression Ovary 0.5 0.034 (0.004)
Depression Ovary 1 0.035 (0.004)
Depression Ovary All 0.04 (0.004)
Depression Pancreas 1e.06 0.017 (0.004)
Depression Pancreas 1e.05 0.021 (0.004)
Depression Pancreas 1e.04 0.033 (0.004)
Depression Pancreas 0.001 0.036 (0.004)
Depression Pancreas 0.01 0.041 (0.004)
Depression Pancreas 0.05 0.043 (0.004)
Depression Pancreas 0.1 0.044 (0.004)
Depression Pancreas 0.5 0.045 (0.004)
Depression Pancreas 1 0.044 (0.004)
Depression Pancreas All 0.048 (0.004)
Depression Pituitary 1e.06 0.013 (0.004)
Depression Pituitary 1e.05 0.013 (0.004)
Depression Pituitary 1e.04 0.024 (0.004)
Depression Pituitary 0.001 0.027 (0.004)
Depression Pituitary 0.01 0.031 (0.004)
Depression Pituitary 0.05 0.035 (0.004)
Depression Pituitary 0.1 0.033 (0.004)
Depression Pituitary 0.5 0.037 (0.004)
Depression Pituitary 1 0.037 (0.004)
Depression Pituitary All 0.037 (0.004)
Depression Prostate 1e.06 0.011 (0.004)
Depression Prostate 1e.05 0.011 (0.004)
Depression Prostate 1e.04 0.015 (0.004)
Depression Prostate 0.001 0.02 (0.004)
Depression Prostate 0.01 0.025 (0.004)
Depression Prostate 0.05 0.027 (0.004)
Depression Prostate 0.1 0.027 (0.004)
Depression Prostate 0.5 0.029 (0.004)
Depression Prostate 1 0.031 (0.004)
Depression Prostate All 0.031 (0.004)
Depression Skin_Not_Sun_Exposed_Suprapubic 1e.06 0.011 (0.004)
Depression Skin_Not_Sun_Exposed_Suprapubic 1e.05 0.015 (0.004)
Depression Skin_Not_Sun_Exposed_Suprapubic 1e.04 0.022 (0.004)
Depression Skin_Not_Sun_Exposed_Suprapubic 0.001 0.034 (0.004)
Depression Skin_Not_Sun_Exposed_Suprapubic 0.01 0.041 (0.004)
Depression Skin_Not_Sun_Exposed_Suprapubic 0.05 0.044 (0.004)
Depression Skin_Not_Sun_Exposed_Suprapubic 0.1 0.046 (0.004)
Depression Skin_Not_Sun_Exposed_Suprapubic 0.5 0.05 (0.004)
Depression Skin_Not_Sun_Exposed_Suprapubic 1 0.051 (0.004)
Depression Skin_Not_Sun_Exposed_Suprapubic All 0.051 (0.004)
Depression Skin_Sun_Exposed_Lower_leg 1e.06 0.008 (0.004)
Depression Skin_Sun_Exposed_Lower_leg 1e.05 0.015 (0.004)
Depression Skin_Sun_Exposed_Lower_leg 1e.04 0.028 (0.004)
Depression Skin_Sun_Exposed_Lower_leg 0.001 0.035 (0.004)
Depression Skin_Sun_Exposed_Lower_leg 0.01 0.04 (0.004)
Depression Skin_Sun_Exposed_Lower_leg 0.05 0.044 (0.004)
Depression Skin_Sun_Exposed_Lower_leg 0.1 0.045 (0.004)
Depression Skin_Sun_Exposed_Lower_leg 0.5 0.048 (0.004)
Depression Skin_Sun_Exposed_Lower_leg 1 0.048 (0.004)
Depression Skin_Sun_Exposed_Lower_leg All 0.049 (0.004)
Depression Small_Intestine_Terminal_Ileum 1e.06 0.004 (0.004)
Depression Small_Intestine_Terminal_Ileum 1e.05 0.016 (0.004)
Depression Small_Intestine_Terminal_Ileum 1e.04 0.02 (0.004)
Depression Small_Intestine_Terminal_Ileum 0.001 0.026 (0.004)
Depression Small_Intestine_Terminal_Ileum 0.01 0.032 (0.004)
Depression Small_Intestine_Terminal_Ileum 0.05 0.036 (0.004)
Depression Small_Intestine_Terminal_Ileum 0.1 0.036 (0.004)
Depression Small_Intestine_Terminal_Ileum 0.5 0.04 (0.004)
Depression Small_Intestine_Terminal_Ileum 1 0.04 (0.004)
Depression Small_Intestine_Terminal_Ileum All 0.04 (0.004)
Depression Spleen 1e.06 0.017 (0.004)
Depression Spleen 1e.05 0.021 (0.004)
Depression Spleen 1e.04 0.026 (0.004)
Depression Spleen 0.001 0.031 (0.004)
Depression Spleen 0.01 0.033 (0.004)
Depression Spleen 0.05 0.039 (0.004)
Depression Spleen 0.1 0.039 (0.004)
Depression Spleen 0.5 0.04 (0.004)
Depression Spleen 1 0.041 (0.004)
Depression Spleen All 0.043 (0.004)
Depression Stomach 1e.06 0.015 (0.004)
Depression Stomach 1e.05 0.025 (0.004)
Depression Stomach 1e.04 0.024 (0.004)
Depression Stomach 0.001 0.03 (0.004)
Depression Stomach 0.01 0.034 (0.004)
Depression Stomach 0.05 0.038 (0.004)
Depression Stomach 0.1 0.038 (0.004)
Depression Stomach 0.5 0.038 (0.004)
Depression Stomach 1 0.038 (0.004)
Depression Stomach All 0.044 (0.004)
Depression Testis 1e.06 0.017 (0.004)
Depression Testis 1e.05 0.019 (0.004)
Depression Testis 1e.04 0.028 (0.004)
Depression Testis 0.001 0.035 (0.004)
Depression Testis 0.01 0.046 (0.004)
Depression Testis 0.05 0.046 (0.004)
Depression Testis 0.1 0.049 (0.004)
Depression Testis 0.5 0.053 (0.004)
Depression Testis 1 0.053 (0.004)
Depression Testis All 0.054 (0.004)
Depression Thyroid 1e.06 0.027 (0.004)
Depression Thyroid 1e.05 0.028 (0.004)
Depression Thyroid 1e.04 0.039 (0.004)
Depression Thyroid 0.001 0.044 (0.004)
Depression Thyroid 0.01 0.048 (0.004)
Depression Thyroid 0.05 0.053 (0.004)
Depression Thyroid 0.1 0.054 (0.004)
Depression Thyroid 0.5 0.057 (0.004)
Depression Thyroid 1 0.056 (0.004)
Depression Thyroid All 0.058 (0.004)
Depression Uterus 1e.05 0.018 (0.004)
Depression Uterus 1e.04 0.017 (0.004)
Depression Uterus 0.001 0.021 (0.004)
Depression Uterus 0.01 0.026 (0.004)
Depression Uterus 0.05 0.025 (0.004)
Depression Uterus 0.1 0.025 (0.004)
Depression Uterus 0.5 0.03 (0.004)
Depression Uterus 1 0.03 (0.004)
Depression Uterus All 0.032 (0.004)
Depression Vagina 1e.06 0.017 (0.004)
Depression Vagina 1e.05 0.012 (0.004)
Depression Vagina 1e.04 0.018 (0.004)
Depression Vagina 0.001 0.02 (0.004)
Depression Vagina 0.01 0.029 (0.004)
Depression Vagina 0.05 0.031 (0.004)
Depression Vagina 0.1 0.032 (0.004)
Depression Vagina 0.5 0.032 (0.004)
Depression Vagina 1 0.032 (0.004)
Depression Vagina All 0.033 (0.004)
Depression Whole_Blood 1e.06 0.023 (0.004)
Depression Whole_Blood 1e.05 0.025 (0.004)
Depression Whole_Blood 1e.04 0.026 (0.004)
Depression Whole_Blood 0.001 0.033 (0.004)
Depression Whole_Blood 0.01 0.039 (0.004)
Depression Whole_Blood 0.05 0.045 (0.004)
Depression Whole_Blood 0.1 0.044 (0.004)
Depression Whole_Blood 0.5 0.046 (0.004)
Depression Whole_Blood 1 0.047 (0.004)
Depression Whole_Blood All 0.049 (0.004)
Depression YFS.BLOOD.RNAARR 1e.06 0.006 (0.004)
Depression YFS.BLOOD.RNAARR 1e.05 0.015 (0.004)
Depression YFS.BLOOD.RNAARR 1e.04 0.019 (0.004)
Depression YFS.BLOOD.RNAARR 0.001 0.024 (0.004)
Depression YFS.BLOOD.RNAARR 0.01 0.029 (0.004)
Depression YFS.BLOOD.RNAARR 0.05 0.04 (0.004)
Depression YFS.BLOOD.RNAARR 0.1 0.042 (0.004)
Depression YFS.BLOOD.RNAARR 0.5 0.043 (0.004)
Depression YFS.BLOOD.RNAARR 1 0.043 (0.004)
Depression YFS.BLOOD.RNAARR All 0.043 (0.004)
Intelligence Adipose_Subcutaneous 1e.05 0.023 (0.004)
Intelligence Adipose_Subcutaneous 1e.04 0.03 (0.004)
Intelligence Adipose_Subcutaneous 0.001 0.04 (0.004)
Intelligence Adipose_Subcutaneous 0.01 0.043 (0.004)
Intelligence Adipose_Subcutaneous 0.05 0.049 (0.004)
Intelligence Adipose_Subcutaneous 0.1 0.051 (0.004)
Intelligence Adipose_Subcutaneous 0.5 0.054 (0.004)
Intelligence Adipose_Subcutaneous 1 0.053 (0.004)
Intelligence Adipose_Subcutaneous All 0.056 (0.004)
Intelligence Adipose_Visceral_Omentum 1e.05 0.019 (0.004)
Intelligence Adipose_Visceral_Omentum 1e.04 0.022 (0.004)
Intelligence Adipose_Visceral_Omentum 0.001 0.038 (0.004)
Intelligence Adipose_Visceral_Omentum 0.01 0.041 (0.004)
Intelligence Adipose_Visceral_Omentum 0.05 0.038 (0.004)
Intelligence Adipose_Visceral_Omentum 0.1 0.039 (0.004)
Intelligence Adipose_Visceral_Omentum 0.5 0.043 (0.004)
Intelligence Adipose_Visceral_Omentum 1 0.043 (0.004)
Intelligence Adipose_Visceral_Omentum All 0.048 (0.004)
Intelligence Adrenal_Gland 1e.05 0.004 (0.004)
Intelligence Adrenal_Gland 1e.04 0.025 (0.004)
Intelligence Adrenal_Gland 0.001 0.031 (0.004)
Intelligence Adrenal_Gland 0.01 0.036 (0.004)
Intelligence Adrenal_Gland 0.05 0.038 (0.004)
Intelligence Adrenal_Gland 0.1 0.043 (0.004)
Intelligence Adrenal_Gland 0.5 0.044 (0.004)
Intelligence Adrenal_Gland 1 0.045 (0.004)
Intelligence Adrenal_Gland All 0.046 (0.004)
Intelligence Artery_Aorta 1e.06 0.01 (0.004)
Intelligence Artery_Aorta 1e.05 0.013 (0.004)
Intelligence Artery_Aorta 1e.04 0.021 (0.004)
Intelligence Artery_Aorta 0.001 0.033 (0.004)
Intelligence Artery_Aorta 0.01 0.037 (0.004)
Intelligence Artery_Aorta 0.05 0.041 (0.004)
Intelligence Artery_Aorta 0.1 0.043 (0.004)
Intelligence Artery_Aorta 0.5 0.045 (0.004)
Intelligence Artery_Aorta 1 0.043 (0.004)
Intelligence Artery_Aorta All 0.045 (0.004)
Intelligence Artery_Coronary 1e.05 0.023 (0.004)
Intelligence Artery_Coronary 1e.04 0.026 (0.004)
Intelligence Artery_Coronary 0.001 0.033 (0.004)
Intelligence Artery_Coronary 0.01 0.033 (0.004)
Intelligence Artery_Coronary 0.05 0.032 (0.004)
Intelligence Artery_Coronary 0.1 0.033 (0.004)
Intelligence Artery_Coronary 0.5 0.035 (0.004)
Intelligence Artery_Coronary 1 0.037 (0.004)
Intelligence Artery_Coronary All 0.041 (0.004)
Intelligence Artery_Tibial 1e.06 0.017 (0.004)
Intelligence Artery_Tibial 1e.05 0.032 (0.004)
Intelligence Artery_Tibial 1e.04 0.039 (0.004)
Intelligence Artery_Tibial 0.001 0.037 (0.004)
Intelligence Artery_Tibial 0.01 0.042 (0.004)
Intelligence Artery_Tibial 0.05 0.046 (0.004)
Intelligence Artery_Tibial 0.1 0.048 (0.004)
Intelligence Artery_Tibial 0.5 0.053 (0.004)
Intelligence Artery_Tibial 1 0.053 (0.004)
Intelligence Artery_Tibial All 0.055 (0.004)
Intelligence Brain_Amygdala 1e.05 0.02 (0.004)
Intelligence Brain_Amygdala 1e.04 0.027 (0.004)
Intelligence Brain_Amygdala 0.001 0.025 (0.004)
Intelligence Brain_Amygdala 0.01 0.029 (0.004)
Intelligence Brain_Amygdala 0.05 0.027 (0.004)
Intelligence Brain_Amygdala 0.1 0.032 (0.004)
Intelligence Brain_Amygdala 0.5 0.038 (0.004)
Intelligence Brain_Amygdala 1 0.038 (0.004)
Intelligence Brain_Amygdala All 0.04 (0.004)
Intelligence Brain_Anterior_cingulate_cortex_BA24 1e.05 0.028 (0.004)
Intelligence Brain_Anterior_cingulate_cortex_BA24 1e.04 0.032 (0.004)
Intelligence Brain_Anterior_cingulate_cortex_BA24 0.001 0.028 (0.004)
Intelligence Brain_Anterior_cingulate_cortex_BA24 0.01 0.036 (0.004)
Intelligence Brain_Anterior_cingulate_cortex_BA24 0.05 0.038 (0.004)
Intelligence Brain_Anterior_cingulate_cortex_BA24 0.1 0.04 (0.004)
Intelligence Brain_Anterior_cingulate_cortex_BA24 0.5 0.035 (0.004)
Intelligence Brain_Anterior_cingulate_cortex_BA24 1 0.035 (0.004)
Intelligence Brain_Anterior_cingulate_cortex_BA24 All 0.041 (0.004)
Intelligence Brain_Caudate_basal_ganglia 1e.05 0.004 (0.004)
Intelligence Brain_Caudate_basal_ganglia 1e.04 0.022 (0.004)
Intelligence Brain_Caudate_basal_ganglia 0.001 0.023 (0.004)
Intelligence Brain_Caudate_basal_ganglia 0.01 0.036 (0.004)
Intelligence Brain_Caudate_basal_ganglia 0.05 0.041 (0.004)
Intelligence Brain_Caudate_basal_ganglia 0.1 0.043 (0.004)
Intelligence Brain_Caudate_basal_ganglia 0.5 0.037 (0.004)
Intelligence Brain_Caudate_basal_ganglia 1 0.037 (0.004)
Intelligence Brain_Caudate_basal_ganglia All 0.044 (0.004)
Intelligence Brain_Cerebellar_Hemisphere 1e.06 0.005 (0.004)
Intelligence Brain_Cerebellar_Hemisphere 1e.05 0.019 (0.004)
Intelligence Brain_Cerebellar_Hemisphere 1e.04 0.027 (0.004)
Intelligence Brain_Cerebellar_Hemisphere 0.001 0.032 (0.004)
Intelligence Brain_Cerebellar_Hemisphere 0.01 0.034 (0.004)
Intelligence Brain_Cerebellar_Hemisphere 0.05 0.038 (0.004)
Intelligence Brain_Cerebellar_Hemisphere 0.1 0.042 (0.004)
Intelligence Brain_Cerebellar_Hemisphere 0.5 0.041 (0.004)
Intelligence Brain_Cerebellar_Hemisphere 1 0.04 (0.004)
Intelligence Brain_Cerebellar_Hemisphere All 0.045 (0.004)
Intelligence Brain_Cerebellum 1e.06 0.003 (0.004)
Intelligence Brain_Cerebellum 1e.05 0.019 (0.004)
Intelligence Brain_Cerebellum 1e.04 0.023 (0.004)
Intelligence Brain_Cerebellum 0.001 0.036 (0.004)
Intelligence Brain_Cerebellum 0.01 0.041 (0.004)
Intelligence Brain_Cerebellum 0.05 0.043 (0.004)
Intelligence Brain_Cerebellum 0.1 0.044 (0.004)
Intelligence Brain_Cerebellum 0.5 0.044 (0.004)
Intelligence Brain_Cerebellum 1 0.043 (0.004)
Intelligence Brain_Cerebellum All 0.047 (0.004)
Intelligence Brain_Cortex 1e.06 0.006 (0.004)
Intelligence Brain_Cortex 1e.05 0.007 (0.004)
Intelligence Brain_Cortex 1e.04 0.029 (0.004)
Intelligence Brain_Cortex 0.001 0.031 (0.004)
Intelligence Brain_Cortex 0.01 0.033 (0.004)
Intelligence Brain_Cortex 0.05 0.034 (0.004)
Intelligence Brain_Cortex 0.1 0.036 (0.004)
Intelligence Brain_Cortex 0.5 0.037 (0.004)
Intelligence Brain_Cortex 1 0.037 (0.004)
Intelligence Brain_Cortex All 0.041 (0.004)
Intelligence Brain_Frontal_Cortex_BA9 1e.06 0.005 (0.004)
Intelligence Brain_Frontal_Cortex_BA9 1e.05 0.005 (0.004)
Intelligence Brain_Frontal_Cortex_BA9 1e.04 0.029 (0.004)
Intelligence Brain_Frontal_Cortex_BA9 0.001 0.027 (0.004)
Intelligence Brain_Frontal_Cortex_BA9 0.01 0.031 (0.004)
Intelligence Brain_Frontal_Cortex_BA9 0.05 0.032 (0.004)
Intelligence Brain_Frontal_Cortex_BA9 0.1 0.034 (0.004)
Intelligence Brain_Frontal_Cortex_BA9 0.5 0.036 (0.004)
Intelligence Brain_Frontal_Cortex_BA9 1 0.036 (0.004)
Intelligence Brain_Frontal_Cortex_BA9 All 0.038 (0.004)
Intelligence Brain_Hippocampus 1e.05 0 (0.004)
Intelligence Brain_Hippocampus 1e.04 0.025 (0.004)
Intelligence Brain_Hippocampus 0.001 0.026 (0.004)
Intelligence Brain_Hippocampus 0.01 0.027 (0.004)
Intelligence Brain_Hippocampus 0.05 0.028 (0.004)
Intelligence Brain_Hippocampus 0.1 0.034 (0.004)
Intelligence Brain_Hippocampus 0.5 0.036 (0.004)
Intelligence Brain_Hippocampus 1 0.036 (0.004)
Intelligence Brain_Hippocampus All 0.037 (0.004)
Intelligence Brain_Hypothalamus 1e.05 0.024 (0.004)
Intelligence Brain_Hypothalamus 1e.04 0.029 (0.004)
Intelligence Brain_Hypothalamus 0.001 0.031 (0.004)
Intelligence Brain_Hypothalamus 0.01 0.033 (0.004)
Intelligence Brain_Hypothalamus 0.05 0.034 (0.004)
Intelligence Brain_Hypothalamus 0.1 0.037 (0.004)
Intelligence Brain_Hypothalamus 0.5 0.037 (0.004)
Intelligence Brain_Hypothalamus 1 0.036 (0.004)
Intelligence Brain_Hypothalamus All 0.037 (0.004)
Intelligence Brain_Nucleus_accumbens_basal_ganglia 1e.05 0.019 (0.004)
Intelligence Brain_Nucleus_accumbens_basal_ganglia 1e.04 0.03 (0.004)
Intelligence Brain_Nucleus_accumbens_basal_ganglia 0.001 0.029 (0.004)
Intelligence Brain_Nucleus_accumbens_basal_ganglia 0.01 0.033 (0.004)
Intelligence Brain_Nucleus_accumbens_basal_ganglia 0.05 0.036 (0.004)
Intelligence Brain_Nucleus_accumbens_basal_ganglia 0.1 0.038 (0.004)
Intelligence Brain_Nucleus_accumbens_basal_ganglia 0.5 0.038 (0.004)
Intelligence Brain_Nucleus_accumbens_basal_ganglia 1 0.038 (0.004)
Intelligence Brain_Nucleus_accumbens_basal_ganglia All 0.04 (0.004)
Intelligence Brain_Putamen_basal_ganglia 1e.05 0.023 (0.004)
Intelligence Brain_Putamen_basal_ganglia 1e.04 0.033 (0.004)
Intelligence Brain_Putamen_basal_ganglia 0.001 0.029 (0.004)
Intelligence Brain_Putamen_basal_ganglia 0.01 0.034 (0.004)
Intelligence Brain_Putamen_basal_ganglia 0.05 0.038 (0.004)
Intelligence Brain_Putamen_basal_ganglia 0.1 0.039 (0.004)
Intelligence Brain_Putamen_basal_ganglia 0.5 0.04 (0.004)
Intelligence Brain_Putamen_basal_ganglia 1 0.04 (0.004)
Intelligence Brain_Putamen_basal_ganglia All 0.043 (0.004)
Intelligence Brain_Spinal_cord_cervical_c-1 1e.05 -0.002 (0.004)
Intelligence Brain_Spinal_cord_cervical_c-1 1e.04 0.021 (0.004)
Intelligence Brain_Spinal_cord_cervical_c-1 0.001 0.017 (0.004)
Intelligence Brain_Spinal_cord_cervical_c-1 0.01 0.025 (0.004)
Intelligence Brain_Spinal_cord_cervical_c-1 0.05 0.03 (0.004)
Intelligence Brain_Spinal_cord_cervical_c-1 0.1 0.031 (0.004)
Intelligence Brain_Spinal_cord_cervical_c-1 0.5 0.029 (0.004)
Intelligence Brain_Spinal_cord_cervical_c-1 1 0.029 (0.004)
Intelligence Brain_Spinal_cord_cervical_c-1 All 0.034 (0.004)
Intelligence Brain_Substantia_nigra 1e.04 0.031 (0.004)
Intelligence Brain_Substantia_nigra 0.001 0.021 (0.004)
Intelligence Brain_Substantia_nigra 0.01 0.025 (0.004)
Intelligence Brain_Substantia_nigra 0.05 0.025 (0.004)
Intelligence Brain_Substantia_nigra 0.1 0.028 (0.004)
Intelligence Brain_Substantia_nigra 0.5 0.026 (0.004)
Intelligence Brain_Substantia_nigra 1 0.025 (0.004)
Intelligence Brain_Substantia_nigra All 0.033 (0.004)
Intelligence Breast_Mammary_Tissue 1e.05 0.003 (0.004)
Intelligence Breast_Mammary_Tissue 1e.04 0.024 (0.004)
Intelligence Breast_Mammary_Tissue 0.001 0.035 (0.004)
Intelligence Breast_Mammary_Tissue 0.01 0.04 (0.004)
Intelligence Breast_Mammary_Tissue 0.05 0.039 (0.004)
Intelligence Breast_Mammary_Tissue 0.1 0.039 (0.004)
Intelligence Breast_Mammary_Tissue 0.5 0.044 (0.004)
Intelligence Breast_Mammary_Tissue 1 0.044 (0.004)
Intelligence Breast_Mammary_Tissue All 0.045 (0.004)
Intelligence Cells_EBV-transformed_lymphocytes 1e.04 0.019 (0.004)
Intelligence Cells_EBV-transformed_lymphocytes 0.001 0.025 (0.004)
Intelligence Cells_EBV-transformed_lymphocytes 0.01 0.026 (0.004)
Intelligence Cells_EBV-transformed_lymphocytes 0.05 0.036 (0.004)
Intelligence Cells_EBV-transformed_lymphocytes 0.1 0.034 (0.004)
Intelligence Cells_EBV-transformed_lymphocytes 0.5 0.034 (0.004)
Intelligence Cells_EBV-transformed_lymphocytes 1 0.034 (0.004)
Intelligence Cells_EBV-transformed_lymphocytes All 0.034 (0.004)
Intelligence Cells_Transformed_fibroblasts 1e.05 0.012 (0.004)
Intelligence Cells_Transformed_fibroblasts 1e.04 0.022 (0.004)
Intelligence Cells_Transformed_fibroblasts 0.001 0.033 (0.004)
Intelligence Cells_Transformed_fibroblasts 0.01 0.039 (0.004)
Intelligence Cells_Transformed_fibroblasts 0.05 0.044 (0.004)
Intelligence Cells_Transformed_fibroblasts 0.1 0.045 (0.004)
Intelligence Cells_Transformed_fibroblasts 0.5 0.048 (0.004)
Intelligence Cells_Transformed_fibroblasts 1 0.048 (0.004)
Intelligence Cells_Transformed_fibroblasts All 0.049 (0.004)
Intelligence CMC.BRAIN.RNASEQ 1e.06 0.009 (0.004)
Intelligence CMC.BRAIN.RNASEQ 1e.05 0.019 (0.004)
Intelligence CMC.BRAIN.RNASEQ 1e.04 0.023 (0.004)
Intelligence CMC.BRAIN.RNASEQ 0.001 0.032 (0.004)
Intelligence CMC.BRAIN.RNASEQ 0.01 0.033 (0.004)
Intelligence CMC.BRAIN.RNASEQ 0.05 0.038 (0.004)
Intelligence CMC.BRAIN.RNASEQ 0.1 0.042 (0.004)
Intelligence CMC.BRAIN.RNASEQ 0.5 0.046 (0.004)
Intelligence CMC.BRAIN.RNASEQ 1 0.044 (0.004)
Intelligence CMC.BRAIN.RNASEQ All 0.048 (0.004)
Intelligence CMC.BRAIN.RNASEQ_SPLICING 1e.06 0.009 (0.004)
Intelligence CMC.BRAIN.RNASEQ_SPLICING 1e.05 0.011 (0.004)
Intelligence CMC.BRAIN.RNASEQ_SPLICING 1e.04 0.017 (0.004)
Intelligence CMC.BRAIN.RNASEQ_SPLICING 0.001 0.026 (0.004)
Intelligence CMC.BRAIN.RNASEQ_SPLICING 0.01 0.039 (0.004)
Intelligence CMC.BRAIN.RNASEQ_SPLICING 0.05 0.039 (0.004)
Intelligence CMC.BRAIN.RNASEQ_SPLICING 0.1 0.038 (0.004)
Intelligence CMC.BRAIN.RNASEQ_SPLICING 0.5 0.04 (0.004)
Intelligence CMC.BRAIN.RNASEQ_SPLICING 1 0.04 (0.004)
Intelligence CMC.BRAIN.RNASEQ_SPLICING All 0.046 (0.004)
Intelligence Colon_Sigmoid 1e.05 0.004 (0.004)
Intelligence Colon_Sigmoid 1e.04 0.03 (0.004)
Intelligence Colon_Sigmoid 0.001 0.034 (0.004)
Intelligence Colon_Sigmoid 0.01 0.034 (0.004)
Intelligence Colon_Sigmoid 0.05 0.042 (0.004)
Intelligence Colon_Sigmoid 0.1 0.041 (0.004)
Intelligence Colon_Sigmoid 0.5 0.043 (0.004)
Intelligence Colon_Sigmoid 1 0.043 (0.004)
Intelligence Colon_Sigmoid All 0.045 (0.004)
Intelligence Colon_Transverse 1e.05 0.021 (0.004)
Intelligence Colon_Transverse 1e.04 0.031 (0.004)
Intelligence Colon_Transverse 0.001 0.035 (0.004)
Intelligence Colon_Transverse 0.01 0.037 (0.004)
Intelligence Colon_Transverse 0.05 0.037 (0.004)
Intelligence Colon_Transverse 0.1 0.04 (0.004)
Intelligence Colon_Transverse 0.5 0.043 (0.004)
Intelligence Colon_Transverse 1 0.042 (0.004)
Intelligence Colon_Transverse All 0.046 (0.004)
Intelligence Esophagus_Gastroesophageal_Junction 1e.04 0.031 (0.004)
Intelligence Esophagus_Gastroesophageal_Junction 0.001 0.03 (0.004)
Intelligence Esophagus_Gastroesophageal_Junction 0.01 0.034 (0.004)
Intelligence Esophagus_Gastroesophageal_Junction 0.05 0.035 (0.004)
Intelligence Esophagus_Gastroesophageal_Junction 0.1 0.04 (0.004)
Intelligence Esophagus_Gastroesophageal_Junction 0.5 0.044 (0.004)
Intelligence Esophagus_Gastroesophageal_Junction 1 0.044 (0.004)
Intelligence Esophagus_Gastroesophageal_Junction All 0.046 (0.004)
Intelligence Esophagus_Mucosa 1e.05 0.024 (0.004)
Intelligence Esophagus_Mucosa 1e.04 0.028 (0.004)
Intelligence Esophagus_Mucosa 0.001 0.036 (0.004)
Intelligence Esophagus_Mucosa 0.01 0.037 (0.004)
Intelligence Esophagus_Mucosa 0.05 0.039 (0.004)
Intelligence Esophagus_Mucosa 0.1 0.039 (0.004)
Intelligence Esophagus_Mucosa 0.5 0.042 (0.004)
Intelligence Esophagus_Mucosa 1 0.042 (0.004)
Intelligence Esophagus_Mucosa All 0.044 (0.004)
Intelligence Esophagus_Muscularis 1e.06 0.002 (0.004)
Intelligence Esophagus_Muscularis 1e.05 0.017 (0.004)
Intelligence Esophagus_Muscularis 1e.04 0.019 (0.004)
Intelligence Esophagus_Muscularis 0.001 0.035 (0.004)
Intelligence Esophagus_Muscularis 0.01 0.038 (0.004)
Intelligence Esophagus_Muscularis 0.05 0.043 (0.004)
Intelligence Esophagus_Muscularis 0.1 0.049 (0.004)
Intelligence Esophagus_Muscularis 0.5 0.051 (0.004)
Intelligence Esophagus_Muscularis 1 0.051 (0.004)
Intelligence Esophagus_Muscularis All 0.053 (0.004)
Intelligence Heart_Atrial_Appendage 1e.05 0.007 (0.004)
Intelligence Heart_Atrial_Appendage 1e.04 0.019 (0.004)
Intelligence Heart_Atrial_Appendage 0.001 0.032 (0.004)
Intelligence Heart_Atrial_Appendage 0.01 0.044 (0.004)
Intelligence Heart_Atrial_Appendage 0.05 0.045 (0.004)
Intelligence Heart_Atrial_Appendage 0.1 0.048 (0.004)
Intelligence Heart_Atrial_Appendage 0.5 0.048 (0.004)
Intelligence Heart_Atrial_Appendage 1 0.049 (0.004)
Intelligence Heart_Atrial_Appendage All 0.051 (0.004)
Intelligence Heart_Left_Ventricle 1e.05 0.023 (0.004)
Intelligence Heart_Left_Ventricle 1e.04 0.027 (0.004)
Intelligence Heart_Left_Ventricle 0.001 0.03 (0.004)
Intelligence Heart_Left_Ventricle 0.01 0.038 (0.004)
Intelligence Heart_Left_Ventricle 0.05 0.039 (0.004)
Intelligence Heart_Left_Ventricle 0.1 0.043 (0.004)
Intelligence Heart_Left_Ventricle 0.5 0.044 (0.004)
Intelligence Heart_Left_Ventricle 1 0.043 (0.004)
Intelligence Heart_Left_Ventricle All 0.042 (0.004)
Intelligence Liver 1e.05 0.012 (0.004)
Intelligence Liver 1e.04 0.029 (0.004)
Intelligence Liver 0.001 0.034 (0.004)
Intelligence Liver 0.01 0.03 (0.004)
Intelligence Liver 0.05 0.031 (0.004)
Intelligence Liver 0.1 0.032 (0.004)
Intelligence Liver 0.5 0.033 (0.004)
Intelligence Liver 1 0.033 (0.004)
Intelligence Liver All 0.04 (0.004)
Intelligence Lung 1e.06 0.022 (0.004)
Intelligence Lung 1e.05 0.021 (0.004)
Intelligence Lung 1e.04 0.033 (0.004)
Intelligence Lung 0.001 0.034 (0.004)
Intelligence Lung 0.01 0.042 (0.004)
Intelligence Lung 0.05 0.043 (0.004)
Intelligence Lung 0.1 0.045 (0.004)
Intelligence Lung 0.5 0.046 (0.004)
Intelligence Lung 1 0.047 (0.004)
Intelligence Lung All 0.05 (0.004)
Intelligence METSIM.ADIPOSE.RNASEQ 1e.05 0.02 (0.004)
Intelligence METSIM.ADIPOSE.RNASEQ 1e.04 0.027 (0.004)
Intelligence METSIM.ADIPOSE.RNASEQ 0.001 0.032 (0.004)
Intelligence METSIM.ADIPOSE.RNASEQ 0.01 0.035 (0.004)
Intelligence METSIM.ADIPOSE.RNASEQ 0.05 0.035 (0.004)
Intelligence METSIM.ADIPOSE.RNASEQ 0.1 0.039 (0.004)
Intelligence METSIM.ADIPOSE.RNASEQ 0.5 0.048 (0.004)
Intelligence METSIM.ADIPOSE.RNASEQ 1 0.047 (0.004)
Intelligence METSIM.ADIPOSE.RNASEQ All 0.049 (0.004)
Intelligence Minor_Salivary_Gland 1e.04 0.017 (0.004)
Intelligence Minor_Salivary_Gland 0.001 0.027 (0.004)
Intelligence Minor_Salivary_Gland 0.01 0.03 (0.004)
Intelligence Minor_Salivary_Gland 0.05 0.029 (0.004)
Intelligence Minor_Salivary_Gland 0.1 0.03 (0.004)
Intelligence Minor_Salivary_Gland 0.5 0.032 (0.004)
Intelligence Minor_Salivary_Gland 1 0.033 (0.004)
Intelligence Minor_Salivary_Gland All 0.035 (0.004)
Intelligence Muscle_Skeletal 1e.06 -0.011 (0.004)
Intelligence Muscle_Skeletal 1e.05 -0.008 (0.004)
Intelligence Muscle_Skeletal 1e.04 0.03 (0.004)
Intelligence Muscle_Skeletal 0.001 0.032 (0.004)
Intelligence Muscle_Skeletal 0.01 0.042 (0.004)
Intelligence Muscle_Skeletal 0.05 0.051 (0.004)
Intelligence Muscle_Skeletal 0.1 0.052 (0.004)
Intelligence Muscle_Skeletal 0.5 0.054 (0.004)
Intelligence Muscle_Skeletal 1 0.052 (0.004)
Intelligence Muscle_Skeletal All 0.053 (0.004)
Intelligence Nerve_Tibial 1e.05 0.018 (0.004)
Intelligence Nerve_Tibial 1e.04 0.034 (0.004)
Intelligence Nerve_Tibial 0.001 0.036 (0.004)
Intelligence Nerve_Tibial 0.01 0.045 (0.004)
Intelligence Nerve_Tibial 0.05 0.046 (0.004)
Intelligence Nerve_Tibial 0.1 0.05 (0.004)
Intelligence Nerve_Tibial 0.5 0.048 (0.004)
Intelligence Nerve_Tibial 1 0.049 (0.004)
Intelligence Nerve_Tibial All 0.052 (0.004)
Intelligence NTR.BLOOD.RNAARR 1e.04 0.025 (0.004)
Intelligence NTR.BLOOD.RNAARR 0.001 0.031 (0.004)
Intelligence NTR.BLOOD.RNAARR 0.01 0.029 (0.004)
Intelligence NTR.BLOOD.RNAARR 0.05 0.033 (0.004)
Intelligence NTR.BLOOD.RNAARR 0.1 0.029 (0.004)
Intelligence NTR.BLOOD.RNAARR 0.5 0.032 (0.004)
Intelligence NTR.BLOOD.RNAARR 1 0.034 (0.004)
Intelligence NTR.BLOOD.RNAARR All 0.038 (0.004)
Intelligence Ovary 1e.04 0.014 (0.004)
Intelligence Ovary 0.001 0.024 (0.004)
Intelligence Ovary 0.01 0.033 (0.004)
Intelligence Ovary 0.05 0.037 (0.004)
Intelligence Ovary 0.1 0.037 (0.004)
Intelligence Ovary 0.5 0.039 (0.004)
Intelligence Ovary 1 0.038 (0.004)
Intelligence Ovary All 0.039 (0.004)
Intelligence Pancreas 1e.05 0.004 (0.004)
Intelligence Pancreas 1e.04 0.026 (0.004)
Intelligence Pancreas 0.001 0.029 (0.004)
Intelligence Pancreas 0.01 0.035 (0.004)
Intelligence Pancreas 0.05 0.038 (0.004)
Intelligence Pancreas 0.1 0.041 (0.004)
Intelligence Pancreas 0.5 0.046 (0.004)
Intelligence Pancreas 1 0.046 (0.004)
Intelligence Pancreas All 0.049 (0.004)
Intelligence Pituitary 1e.05 0.007 (0.004)
Intelligence Pituitary 1e.04 0.029 (0.004)
Intelligence Pituitary 0.001 0.034 (0.004)
Intelligence Pituitary 0.01 0.035 (0.004)
Intelligence Pituitary 0.05 0.038 (0.004)
Intelligence Pituitary 0.1 0.037 (0.004)
Intelligence Pituitary 0.5 0.04 (0.004)
Intelligence Pituitary 1 0.04 (0.004)
Intelligence Pituitary All 0.043 (0.004)
Intelligence Prostate 1e.06 0.01 (0.004)
Intelligence Prostate 1e.05 0.017 (0.004)
Intelligence Prostate 1e.04 0.026 (0.004)
Intelligence Prostate 0.001 0.034 (0.004)
Intelligence Prostate 0.01 0.035 (0.004)
Intelligence Prostate 0.05 0.037 (0.004)
Intelligence Prostate 0.1 0.039 (0.004)
Intelligence Prostate 0.5 0.038 (0.004)
Intelligence Prostate 1 0.038 (0.004)
Intelligence Prostate All 0.042 (0.004)
Intelligence Skin_Not_Sun_Exposed_Suprapubic 1e.05 0.013 (0.004)
Intelligence Skin_Not_Sun_Exposed_Suprapubic 1e.04 0.026 (0.004)
Intelligence Skin_Not_Sun_Exposed_Suprapubic 0.001 0.039 (0.004)
Intelligence Skin_Not_Sun_Exposed_Suprapubic 0.01 0.039 (0.004)
Intelligence Skin_Not_Sun_Exposed_Suprapubic 0.05 0.043 (0.004)
Intelligence Skin_Not_Sun_Exposed_Suprapubic 0.1 0.046 (0.004)
Intelligence Skin_Not_Sun_Exposed_Suprapubic 0.5 0.049 (0.004)
Intelligence Skin_Not_Sun_Exposed_Suprapubic 1 0.048 (0.004)
Intelligence Skin_Not_Sun_Exposed_Suprapubic All 0.051 (0.004)
Intelligence Skin_Sun_Exposed_Lower_leg 1e.05 0.006 (0.004)
Intelligence Skin_Sun_Exposed_Lower_leg 1e.04 0.026 (0.004)
Intelligence Skin_Sun_Exposed_Lower_leg 0.001 0.03 (0.004)
Intelligence Skin_Sun_Exposed_Lower_leg 0.01 0.035 (0.004)
Intelligence Skin_Sun_Exposed_Lower_leg 0.05 0.036 (0.004)
Intelligence Skin_Sun_Exposed_Lower_leg 0.1 0.041 (0.004)
Intelligence Skin_Sun_Exposed_Lower_leg 0.5 0.045 (0.004)
Intelligence Skin_Sun_Exposed_Lower_leg 1 0.044 (0.004)
Intelligence Skin_Sun_Exposed_Lower_leg All 0.046 (0.004)
Intelligence Small_Intestine_Terminal_Ileum 1e.05 0.012 (0.004)
Intelligence Small_Intestine_Terminal_Ileum 1e.04 0.022 (0.004)
Intelligence Small_Intestine_Terminal_Ileum 0.001 0.027 (0.004)
Intelligence Small_Intestine_Terminal_Ileum 0.01 0.026 (0.004)
Intelligence Small_Intestine_Terminal_Ileum 0.05 0.029 (0.004)
Intelligence Small_Intestine_Terminal_Ileum 0.1 0.033 (0.004)
Intelligence Small_Intestine_Terminal_Ileum 0.5 0.033 (0.004)
Intelligence Small_Intestine_Terminal_Ileum 1 0.034 (0.004)
Intelligence Small_Intestine_Terminal_Ileum All 0.035 (0.004)
Intelligence Spleen 1e.04 0.028 (0.004)
Intelligence Spleen 0.001 0.038 (0.004)
Intelligence Spleen 0.01 0.039 (0.004)
Intelligence Spleen 0.05 0.04 (0.004)
Intelligence Spleen 0.1 0.041 (0.004)
Intelligence Spleen 0.5 0.043 (0.004)
Intelligence Spleen 1 0.042 (0.004)
Intelligence Spleen All 0.047 (0.004)
Intelligence Stomach 1e.05 0.025 (0.004)
Intelligence Stomach 1e.04 0.029 (0.004)
Intelligence Stomach 0.001 0.037 (0.004)
Intelligence Stomach 0.01 0.042 (0.004)
Intelligence Stomach 0.05 0.044 (0.004)
Intelligence Stomach 0.1 0.045 (0.004)
Intelligence Stomach 0.5 0.046 (0.004)
Intelligence Stomach 1 0.045 (0.004)
Intelligence Stomach All 0.048 (0.004)
Intelligence Testis 1e.05 0.004 (0.004)
Intelligence Testis 1e.04 0.026 (0.004)
Intelligence Testis 0.001 0.035 (0.004)
Intelligence Testis 0.01 0.043 (0.004)
Intelligence Testis 0.05 0.044 (0.004)
Intelligence Testis 0.1 0.047 (0.004)
Intelligence Testis 0.5 0.047 (0.004)
Intelligence Testis 1 0.048 (0.004)
Intelligence Testis All 0.051 (0.004)
Intelligence Thyroid 1e.06 0.003 (0.004)
Intelligence Thyroid 1e.05 0.033 (0.004)
Intelligence Thyroid 1e.04 0.032 (0.004)
Intelligence Thyroid 0.001 0.031 (0.004)
Intelligence Thyroid 0.01 0.042 (0.004)
Intelligence Thyroid 0.05 0.045 (0.004)
Intelligence Thyroid 0.1 0.047 (0.004)
Intelligence Thyroid 0.5 0.051 (0.004)
Intelligence Thyroid 1 0.05 (0.004)
Intelligence Thyroid All 0.052 (0.004)
Intelligence Uterus 1e.06 0.022 (0.004)
Intelligence Uterus 1e.05 0.029 (0.004)
Intelligence Uterus 1e.04 0.026 (0.004)
Intelligence Uterus 0.001 0.024 (0.004)
Intelligence Uterus 0.01 0.029 (0.004)
Intelligence Uterus 0.05 0.032 (0.004)
Intelligence Uterus 0.1 0.031 (0.004)
Intelligence Uterus 0.5 0.037 (0.004)
Intelligence Uterus 1 0.036 (0.004)
Intelligence Uterus All 0.04 (0.004)
Intelligence Vagina 1e.04 0.032 (0.004)
Intelligence Vagina 0.001 0.023 (0.004)
Intelligence Vagina 0.01 0.027 (0.004)
Intelligence Vagina 0.05 0.027 (0.004)
Intelligence Vagina 0.1 0.029 (0.004)
Intelligence Vagina 0.5 0.033 (0.004)
Intelligence Vagina 1 0.032 (0.004)
Intelligence Vagina All 0.039 (0.004)
Intelligence Whole_Blood 1e.05 -0.003 (0.004)
Intelligence Whole_Blood 1e.04 0.03 (0.004)
Intelligence Whole_Blood 0.001 0.032 (0.004)
Intelligence Whole_Blood 0.01 0.036 (0.004)
Intelligence Whole_Blood 0.05 0.035 (0.004)
Intelligence Whole_Blood 0.1 0.036 (0.004)
Intelligence Whole_Blood 0.5 0.037 (0.004)
Intelligence Whole_Blood 1 0.038 (0.004)
Intelligence Whole_Blood All 0.043 (0.004)
Intelligence YFS.BLOOD.RNAARR 1e.05 0.002 (0.004)
Intelligence YFS.BLOOD.RNAARR 1e.04 0.021 (0.004)
Intelligence YFS.BLOOD.RNAARR 0.001 0.029 (0.004)
Intelligence YFS.BLOOD.RNAARR 0.01 0.026 (0.004)
Intelligence YFS.BLOOD.RNAARR 0.05 0.033 (0.004)
Intelligence YFS.BLOOD.RNAARR 0.1 0.038 (0.004)
Intelligence YFS.BLOOD.RNAARR 0.5 0.047 (0.004)
Intelligence YFS.BLOOD.RNAARR 1 0.047 (0.004)
Intelligence YFS.BLOOD.RNAARR All 0.049 (0.004)
BMI Adipose_Subcutaneous 1e.06 0.043 (0.004)
BMI Adipose_Subcutaneous 1e.05 0.05 (0.004)
BMI Adipose_Subcutaneous 1e.04 0.06 (0.004)
BMI Adipose_Subcutaneous 0.001 0.073 (0.004)
BMI Adipose_Subcutaneous 0.01 0.092 (0.004)
BMI Adipose_Subcutaneous 0.05 0.109 (0.004)
BMI Adipose_Subcutaneous 0.1 0.113 (0.004)
BMI Adipose_Subcutaneous 0.5 0.127 (0.004)
BMI Adipose_Subcutaneous 1 0.127 (0.004)
BMI Adipose_Subcutaneous All 0.128 (0.004)
BMI Adipose_Visceral_Omentum 1e.06 0.046 (0.004)
BMI Adipose_Visceral_Omentum 1e.05 0.049 (0.004)
BMI Adipose_Visceral_Omentum 1e.04 0.055 (0.004)
BMI Adipose_Visceral_Omentum 0.001 0.071 (0.004)
BMI Adipose_Visceral_Omentum 0.01 0.086 (0.004)
BMI Adipose_Visceral_Omentum 0.05 0.1 (0.004)
BMI Adipose_Visceral_Omentum 0.1 0.108 (0.004)
BMI Adipose_Visceral_Omentum 0.5 0.118 (0.004)
BMI Adipose_Visceral_Omentum 1 0.118 (0.004)
BMI Adipose_Visceral_Omentum All 0.119 (0.004)
BMI Adrenal_Gland 1e.06 0.036 (0.004)
BMI Adrenal_Gland 1e.05 0.04 (0.004)
BMI Adrenal_Gland 1e.04 0.05 (0.004)
BMI Adrenal_Gland 0.001 0.058 (0.004)
BMI Adrenal_Gland 0.01 0.073 (0.004)
BMI Adrenal_Gland 0.05 0.085 (0.004)
BMI Adrenal_Gland 0.1 0.091 (0.004)
BMI Adrenal_Gland 0.5 0.101 (0.004)
BMI Adrenal_Gland 1 0.102 (0.004)
BMI Adrenal_Gland All 0.103 (0.004)
BMI Artery_Aorta 1e.06 0.032 (0.004)
BMI Artery_Aorta 1e.05 0.038 (0.004)
BMI Artery_Aorta 1e.04 0.042 (0.004)
BMI Artery_Aorta 0.001 0.056 (0.004)
BMI Artery_Aorta 0.01 0.075 (0.004)
BMI Artery_Aorta 0.05 0.092 (0.004)
BMI Artery_Aorta 0.1 0.097 (0.004)
BMI Artery_Aorta 0.5 0.108 (0.004)
BMI Artery_Aorta 1 0.109 (0.004)
BMI Artery_Aorta All 0.116 (0.004)
BMI Artery_Coronary 1e.06 0.035 (0.004)
BMI Artery_Coronary 1e.05 0.04 (0.004)
BMI Artery_Coronary 1e.04 0.05 (0.004)
BMI Artery_Coronary 0.001 0.057 (0.004)
BMI Artery_Coronary 0.01 0.075 (0.004)
BMI Artery_Coronary 0.05 0.089 (0.004)
BMI Artery_Coronary 0.1 0.095 (0.004)
BMI Artery_Coronary 0.5 0.1 (0.004)
BMI Artery_Coronary 1 0.101 (0.004)
BMI Artery_Coronary All 0.103 (0.004)
BMI Artery_Tibial 1e.06 0.046 (0.004)
BMI Artery_Tibial 1e.05 0.052 (0.004)
BMI Artery_Tibial 1e.04 0.06 (0.004)
BMI Artery_Tibial 0.001 0.074 (0.004)
BMI Artery_Tibial 0.01 0.091 (0.004)
BMI Artery_Tibial 0.05 0.111 (0.004)
BMI Artery_Tibial 0.1 0.116 (0.004)
BMI Artery_Tibial 0.5 0.127 (0.004)
BMI Artery_Tibial 1 0.128 (0.004)
BMI Artery_Tibial All 0.13 (0.004)
BMI Brain_Amygdala 1e.06 0.029 (0.004)
BMI Brain_Amygdala 1e.05 0.032 (0.004)
BMI Brain_Amygdala 1e.04 0.039 (0.004)
BMI Brain_Amygdala 0.001 0.044 (0.004)
BMI Brain_Amygdala 0.01 0.057 (0.004)
BMI Brain_Amygdala 0.05 0.066 (0.004)
BMI Brain_Amygdala 0.1 0.07 (0.004)
BMI Brain_Amygdala 0.5 0.078 (0.004)
BMI Brain_Amygdala 1 0.079 (0.004)
BMI Brain_Amygdala All 0.083 (0.004)
BMI Brain_Anterior_cingulate_cortex_BA24 1e.06 0.03 (0.004)
BMI Brain_Anterior_cingulate_cortex_BA24 1e.05 0.036 (0.004)
BMI Brain_Anterior_cingulate_cortex_BA24 1e.04 0.039 (0.004)
BMI Brain_Anterior_cingulate_cortex_BA24 0.001 0.049 (0.004)
BMI Brain_Anterior_cingulate_cortex_BA24 0.01 0.068 (0.004)
BMI Brain_Anterior_cingulate_cortex_BA24 0.05 0.081 (0.004)
BMI Brain_Anterior_cingulate_cortex_BA24 0.1 0.088 (0.004)
BMI Brain_Anterior_cingulate_cortex_BA24 0.5 0.095 (0.004)
BMI Brain_Anterior_cingulate_cortex_BA24 1 0.096 (0.004)
BMI Brain_Anterior_cingulate_cortex_BA24 All 0.1 (0.004)
BMI Brain_Caudate_basal_ganglia 1e.06 0.032 (0.004)
BMI Brain_Caudate_basal_ganglia 1e.05 0.041 (0.004)
BMI Brain_Caudate_basal_ganglia 1e.04 0.05 (0.004)
BMI Brain_Caudate_basal_ganglia 0.001 0.058 (0.004)
BMI Brain_Caudate_basal_ganglia 0.01 0.071 (0.004)
BMI Brain_Caudate_basal_ganglia 0.05 0.083 (0.004)
BMI Brain_Caudate_basal_ganglia 0.1 0.088 (0.004)
BMI Brain_Caudate_basal_ganglia 0.5 0.098 (0.004)
BMI Brain_Caudate_basal_ganglia 1 0.099 (0.004)
BMI Brain_Caudate_basal_ganglia All 0.102 (0.004)
BMI Brain_Cerebellar_Hemisphere 1e.06 0.045 (0.004)
BMI Brain_Cerebellar_Hemisphere 1e.05 0.046 (0.004)
BMI Brain_Cerebellar_Hemisphere 1e.04 0.056 (0.004)
BMI Brain_Cerebellar_Hemisphere 0.001 0.065 (0.004)
BMI Brain_Cerebellar_Hemisphere 0.01 0.076 (0.004)
BMI Brain_Cerebellar_Hemisphere 0.05 0.091 (0.004)
BMI Brain_Cerebellar_Hemisphere 0.1 0.094 (0.004)
BMI Brain_Cerebellar_Hemisphere 0.5 0.103 (0.004)
BMI Brain_Cerebellar_Hemisphere 1 0.105 (0.004)
BMI Brain_Cerebellar_Hemisphere All 0.105 (0.004)
BMI Brain_Cerebellum 1e.06 0.046 (0.004)
BMI Brain_Cerebellum 1e.05 0.049 (0.004)
BMI Brain_Cerebellum 1e.04 0.057 (0.004)
BMI Brain_Cerebellum 0.001 0.064 (0.004)
BMI Brain_Cerebellum 0.01 0.077 (0.004)
BMI Brain_Cerebellum 0.05 0.095 (0.004)
BMI Brain_Cerebellum 0.1 0.099 (0.004)
BMI Brain_Cerebellum 0.5 0.108 (0.004)
BMI Brain_Cerebellum 1 0.108 (0.004)
BMI Brain_Cerebellum All 0.11 (0.004)
BMI Brain_Cortex 1e.06 0.031 (0.004)
BMI Brain_Cortex 1e.05 0.037 (0.004)
BMI Brain_Cortex 1e.04 0.043 (0.004)
BMI Brain_Cortex 0.001 0.05 (0.004)
BMI Brain_Cortex 0.01 0.068 (0.004)
BMI Brain_Cortex 0.05 0.085 (0.004)
BMI Brain_Cortex 0.1 0.089 (0.004)
BMI Brain_Cortex 0.5 0.098 (0.004)
BMI Brain_Cortex 1 0.098 (0.004)
BMI Brain_Cortex All 0.102 (0.004)
BMI Brain_Frontal_Cortex_BA9 1e.06 0.032 (0.004)
BMI Brain_Frontal_Cortex_BA9 1e.05 0.042 (0.004)
BMI Brain_Frontal_Cortex_BA9 1e.04 0.045 (0.004)
BMI Brain_Frontal_Cortex_BA9 0.001 0.055 (0.004)
BMI Brain_Frontal_Cortex_BA9 0.01 0.068 (0.004)
BMI Brain_Frontal_Cortex_BA9 0.05 0.078 (0.004)
BMI Brain_Frontal_Cortex_BA9 0.1 0.086 (0.004)
BMI Brain_Frontal_Cortex_BA9 0.5 0.091 (0.004)
BMI Brain_Frontal_Cortex_BA9 1 0.092 (0.004)
BMI Brain_Frontal_Cortex_BA9 All 0.098 (0.004)
BMI Brain_Hippocampus 1e.06 0.026 (0.004)
BMI Brain_Hippocampus 1e.05 0.032 (0.004)
BMI Brain_Hippocampus 1e.04 0.041 (0.004)
BMI Brain_Hippocampus 0.001 0.049 (0.004)
BMI Brain_Hippocampus 0.01 0.058 (0.004)
BMI Brain_Hippocampus 0.05 0.071 (0.004)
BMI Brain_Hippocampus 0.1 0.076 (0.004)
BMI Brain_Hippocampus 0.5 0.081 (0.004)
BMI Brain_Hippocampus 1 0.082 (0.004)
BMI Brain_Hippocampus All 0.084 (0.004)
BMI Brain_Hypothalamus 1e.06 0.032 (0.004)
BMI Brain_Hypothalamus 1e.05 0.035 (0.004)
BMI Brain_Hypothalamus 1e.04 0.04 (0.004)
BMI Brain_Hypothalamus 0.001 0.046 (0.004)
BMI Brain_Hypothalamus 0.01 0.059 (0.004)
BMI Brain_Hypothalamus 0.05 0.072 (0.004)
BMI Brain_Hypothalamus 0.1 0.075 (0.004)
BMI Brain_Hypothalamus 0.5 0.08 (0.004)
BMI Brain_Hypothalamus 1 0.082 (0.004)
BMI Brain_Hypothalamus All 0.082 (0.004)
BMI Brain_Nucleus_accumbens_basal_ganglia 1e.06 0.034 (0.004)
BMI Brain_Nucleus_accumbens_basal_ganglia 1e.05 0.043 (0.004)
BMI Brain_Nucleus_accumbens_basal_ganglia 1e.04 0.049 (0.004)
BMI Brain_Nucleus_accumbens_basal_ganglia 0.001 0.058 (0.004)
BMI Brain_Nucleus_accumbens_basal_ganglia 0.01 0.068 (0.004)
BMI Brain_Nucleus_accumbens_basal_ganglia 0.05 0.08 (0.004)
BMI Brain_Nucleus_accumbens_basal_ganglia 0.1 0.088 (0.004)
BMI Brain_Nucleus_accumbens_basal_ganglia 0.5 0.093 (0.004)
BMI Brain_Nucleus_accumbens_basal_ganglia 1 0.093 (0.004)
BMI Brain_Nucleus_accumbens_basal_ganglia All 0.095 (0.004)
BMI Brain_Putamen_basal_ganglia 1e.06 0.033 (0.004)
BMI Brain_Putamen_basal_ganglia 1e.05 0.038 (0.004)
BMI Brain_Putamen_basal_ganglia 1e.04 0.047 (0.004)
BMI Brain_Putamen_basal_ganglia 0.001 0.054 (0.004)
BMI Brain_Putamen_basal_ganglia 0.01 0.066 (0.004)
BMI Brain_Putamen_basal_ganglia 0.05 0.077 (0.004)
BMI Brain_Putamen_basal_ganglia 0.1 0.085 (0.004)
BMI Brain_Putamen_basal_ganglia 0.5 0.093 (0.004)
BMI Brain_Putamen_basal_ganglia 1 0.094 (0.004)
BMI Brain_Putamen_basal_ganglia All 0.096 (0.004)
BMI Brain_Spinal_cord_cervical_c-1 1e.06 0.035 (0.004)
BMI Brain_Spinal_cord_cervical_c-1 1e.05 0.041 (0.004)
BMI Brain_Spinal_cord_cervical_c-1 1e.04 0.049 (0.004)
BMI Brain_Spinal_cord_cervical_c-1 0.001 0.057 (0.004)
BMI Brain_Spinal_cord_cervical_c-1 0.01 0.069 (0.004)
BMI Brain_Spinal_cord_cervical_c-1 0.05 0.078 (0.004)
BMI Brain_Spinal_cord_cervical_c-1 0.1 0.084 (0.004)
BMI Brain_Spinal_cord_cervical_c-1 0.5 0.089 (0.004)
BMI Brain_Spinal_cord_cervical_c-1 1 0.09 (0.004)
BMI Brain_Spinal_cord_cervical_c-1 All 0.09 (0.004)
BMI Brain_Substantia_nigra 1e.06 0.031 (0.004)
BMI Brain_Substantia_nigra 1e.05 0.049 (0.004)
BMI Brain_Substantia_nigra 1e.04 0.052 (0.004)
BMI Brain_Substantia_nigra 0.001 0.055 (0.004)
BMI Brain_Substantia_nigra 0.01 0.065 (0.004)
BMI Brain_Substantia_nigra 0.05 0.074 (0.004)
BMI Brain_Substantia_nigra 0.1 0.078 (0.004)
BMI Brain_Substantia_nigra 0.5 0.083 (0.004)
BMI Brain_Substantia_nigra 1 0.082 (0.004)
BMI Brain_Substantia_nigra All 0.083 (0.004)
BMI Breast_Mammary_Tissue 1e.06 0.042 (0.004)
BMI Breast_Mammary_Tissue 1e.05 0.049 (0.004)
BMI Breast_Mammary_Tissue 1e.04 0.054 (0.004)
BMI Breast_Mammary_Tissue 0.001 0.067 (0.004)
BMI Breast_Mammary_Tissue 0.01 0.079 (0.004)
BMI Breast_Mammary_Tissue 0.05 0.093 (0.004)
BMI Breast_Mammary_Tissue 0.1 0.1 (0.004)
BMI Breast_Mammary_Tissue 0.5 0.11 (0.004)
BMI Breast_Mammary_Tissue 1 0.11 (0.004)
BMI Breast_Mammary_Tissue All 0.111 (0.004)
BMI Cells_EBV-transformed_lymphocytes 1e.06 0.037 (0.004)
BMI Cells_EBV-transformed_lymphocytes 1e.05 0.041 (0.004)
BMI Cells_EBV-transformed_lymphocytes 1e.04 0.047 (0.004)
BMI Cells_EBV-transformed_lymphocytes 0.001 0.06 (0.004)
BMI Cells_EBV-transformed_lymphocytes 0.01 0.071 (0.004)
BMI Cells_EBV-transformed_lymphocytes 0.05 0.085 (0.004)
BMI Cells_EBV-transformed_lymphocytes 0.1 0.09 (0.004)
BMI Cells_EBV-transformed_lymphocytes 0.5 0.097 (0.004)
BMI Cells_EBV-transformed_lymphocytes 1 0.097 (0.004)
BMI Cells_EBV-transformed_lymphocytes All 0.097 (0.004)
BMI Cells_Transformed_fibroblasts 1e.06 0.042 (0.004)
BMI Cells_Transformed_fibroblasts 1e.05 0.05 (0.004)
BMI Cells_Transformed_fibroblasts 1e.04 0.056 (0.004)
BMI Cells_Transformed_fibroblasts 0.001 0.071 (0.004)
BMI Cells_Transformed_fibroblasts 0.01 0.088 (0.004)
BMI Cells_Transformed_fibroblasts 0.05 0.104 (0.004)
BMI Cells_Transformed_fibroblasts 0.1 0.109 (0.004)
BMI Cells_Transformed_fibroblasts 0.5 0.119 (0.004)
BMI Cells_Transformed_fibroblasts 1 0.121 (0.004)
BMI Cells_Transformed_fibroblasts All 0.124 (0.004)
BMI CMC.BRAIN.RNASEQ 1e.06 0.063 (0.004)
BMI CMC.BRAIN.RNASEQ 1e.05 0.067 (0.004)
BMI CMC.BRAIN.RNASEQ 1e.04 0.071 (0.004)
BMI CMC.BRAIN.RNASEQ 0.001 0.079 (0.004)
BMI CMC.BRAIN.RNASEQ 0.01 0.092 (0.004)
BMI CMC.BRAIN.RNASEQ 0.05 0.109 (0.004)
BMI CMC.BRAIN.RNASEQ 0.1 0.115 (0.004)
BMI CMC.BRAIN.RNASEQ 0.5 0.125 (0.004)
BMI CMC.BRAIN.RNASEQ 1 0.125 (0.004)
BMI CMC.BRAIN.RNASEQ All 0.126 (0.004)
BMI CMC.BRAIN.RNASEQ_SPLICING 1e.06 0.046 (0.004)
BMI CMC.BRAIN.RNASEQ_SPLICING 1e.05 0.053 (0.004)
BMI CMC.BRAIN.RNASEQ_SPLICING 1e.04 0.063 (0.004)
BMI CMC.BRAIN.RNASEQ_SPLICING 0.001 0.073 (0.004)
BMI CMC.BRAIN.RNASEQ_SPLICING 0.01 0.086 (0.004)
BMI CMC.BRAIN.RNASEQ_SPLICING 0.05 0.094 (0.004)
BMI CMC.BRAIN.RNASEQ_SPLICING 0.1 0.099 (0.004)
BMI CMC.BRAIN.RNASEQ_SPLICING 0.5 0.106 (0.004)
BMI CMC.BRAIN.RNASEQ_SPLICING 1 0.106 (0.004)
BMI CMC.BRAIN.RNASEQ_SPLICING All 0.109 (0.004)
BMI Colon_Sigmoid 1e.06 0.033 (0.004)
BMI Colon_Sigmoid 1e.05 0.039 (0.004)
BMI Colon_Sigmoid 1e.04 0.041 (0.004)
BMI Colon_Sigmoid 0.001 0.055 (0.004)
BMI Colon_Sigmoid 0.01 0.071 (0.004)
BMI Colon_Sigmoid 0.05 0.082 (0.004)
BMI Colon_Sigmoid 0.1 0.087 (0.004)
BMI Colon_Sigmoid 0.5 0.095 (0.004)
BMI Colon_Sigmoid 1 0.095 (0.004)
BMI Colon_Sigmoid All 0.095 (0.004)
BMI Colon_Transverse 1e.06 0.036 (0.004)
BMI Colon_Transverse 1e.05 0.04 (0.004)
BMI Colon_Transverse 1e.04 0.048 (0.004)
BMI Colon_Transverse 0.001 0.058 (0.004)
BMI Colon_Transverse 0.01 0.071 (0.004)
BMI Colon_Transverse 0.05 0.08 (0.004)
BMI Colon_Transverse 0.1 0.089 (0.004)
BMI Colon_Transverse 0.5 0.1 (0.004)
BMI Colon_Transverse 1 0.1 (0.004)
BMI Colon_Transverse All 0.102 (0.004)
BMI Esophagus_Gastroesophageal_Junction 1e.06 0.034 (0.004)
BMI Esophagus_Gastroesophageal_Junction 1e.05 0.036 (0.004)
BMI Esophagus_Gastroesophageal_Junction 1e.04 0.044 (0.004)
BMI Esophagus_Gastroesophageal_Junction 0.001 0.056 (0.004)
BMI Esophagus_Gastroesophageal_Junction 0.01 0.072 (0.004)
BMI Esophagus_Gastroesophageal_Junction 0.05 0.084 (0.004)
BMI Esophagus_Gastroesophageal_Junction 0.1 0.09 (0.004)
BMI Esophagus_Gastroesophageal_Junction 0.5 0.098 (0.004)
BMI Esophagus_Gastroesophageal_Junction 1 0.099 (0.004)
BMI Esophagus_Gastroesophageal_Junction All 0.102 (0.004)
BMI Esophagus_Mucosa 1e.06 0.042 (0.004)
BMI Esophagus_Mucosa 1e.05 0.049 (0.004)
BMI Esophagus_Mucosa 1e.04 0.059 (0.004)
BMI Esophagus_Mucosa 0.001 0.071 (0.004)
BMI Esophagus_Mucosa 0.01 0.086 (0.004)
BMI Esophagus_Mucosa 0.05 0.102 (0.004)
BMI Esophagus_Mucosa 0.1 0.11 (0.004)
BMI Esophagus_Mucosa 0.5 0.119 (0.004)
BMI Esophagus_Mucosa 1 0.119 (0.004)
BMI Esophagus_Mucosa All 0.119 (0.004)
BMI Esophagus_Muscularis 1e.06 0.041 (0.004)
BMI Esophagus_Muscularis 1e.05 0.05 (0.004)
BMI Esophagus_Muscularis 1e.04 0.057 (0.004)
BMI Esophagus_Muscularis 0.001 0.069 (0.004)
BMI Esophagus_Muscularis 0.01 0.087 (0.004)
BMI Esophagus_Muscularis 0.05 0.101 (0.004)
BMI Esophagus_Muscularis 0.1 0.107 (0.004)
BMI Esophagus_Muscularis 0.5 0.119 (0.004)
BMI Esophagus_Muscularis 1 0.12 (0.004)
BMI Esophagus_Muscularis All 0.12 (0.004)
BMI Heart_Atrial_Appendage 1e.06 0.045 (0.004)
BMI Heart_Atrial_Appendage 1e.05 0.049 (0.004)
BMI Heart_Atrial_Appendage 1e.04 0.054 (0.004)
BMI Heart_Atrial_Appendage 0.001 0.069 (0.004)
BMI Heart_Atrial_Appendage 0.01 0.086 (0.004)
BMI Heart_Atrial_Appendage 0.05 0.101 (0.004)
BMI Heart_Atrial_Appendage 0.1 0.108 (0.004)
BMI Heart_Atrial_Appendage 0.5 0.115 (0.004)
BMI Heart_Atrial_Appendage 1 0.115 (0.004)
BMI Heart_Atrial_Appendage All 0.115 (0.004)
BMI Heart_Left_Ventricle 1e.06 0.047 (0.004)
BMI Heart_Left_Ventricle 1e.05 0.051 (0.004)
BMI Heart_Left_Ventricle 1e.04 0.057 (0.004)
BMI Heart_Left_Ventricle 0.001 0.067 (0.004)
BMI Heart_Left_Ventricle 0.01 0.082 (0.004)
BMI Heart_Left_Ventricle 0.05 0.096 (0.004)
BMI Heart_Left_Ventricle 0.1 0.102 (0.004)
BMI Heart_Left_Ventricle 0.5 0.112 (0.004)
BMI Heart_Left_Ventricle 1 0.112 (0.004)
BMI Heart_Left_Ventricle All 0.112 (0.004)
BMI Liver 1e.06 0.037 (0.004)
BMI Liver 1e.05 0.041 (0.004)
BMI Liver 1e.04 0.05 (0.004)
BMI Liver 0.001 0.055 (0.004)
BMI Liver 0.01 0.065 (0.004)
BMI Liver 0.05 0.078 (0.004)
BMI Liver 0.1 0.083 (0.004)
BMI Liver 0.5 0.091 (0.004)
BMI Liver 1 0.09 (0.004)
BMI Liver All 0.09 (0.004)
BMI Lung 1e.06 0.047 (0.004)
BMI Lung 1e.05 0.052 (0.004)
BMI Lung 1e.04 0.057 (0.004)
BMI Lung 0.001 0.065 (0.004)
BMI Lung 0.01 0.082 (0.004)
BMI Lung 0.05 0.101 (0.004)
BMI Lung 0.1 0.107 (0.004)
BMI Lung 0.5 0.117 (0.004)
BMI Lung 1 0.118 (0.004)
BMI Lung All 0.12 (0.004)
BMI METSIM.ADIPOSE.RNASEQ 1e.06 0.041 (0.004)
BMI METSIM.ADIPOSE.RNASEQ 1e.05 0.052 (0.004)
BMI METSIM.ADIPOSE.RNASEQ 1e.04 0.058 (0.004)
BMI METSIM.ADIPOSE.RNASEQ 0.001 0.064 (0.004)
BMI METSIM.ADIPOSE.RNASEQ 0.01 0.079 (0.004)
BMI METSIM.ADIPOSE.RNASEQ 0.05 0.09 (0.004)
BMI METSIM.ADIPOSE.RNASEQ 0.1 0.099 (0.004)
BMI METSIM.ADIPOSE.RNASEQ 0.5 0.107 (0.004)
BMI METSIM.ADIPOSE.RNASEQ 1 0.108 (0.004)
BMI METSIM.ADIPOSE.RNASEQ All 0.109 (0.004)
BMI Minor_Salivary_Gland 1e.06 0.031 (0.004)
BMI Minor_Salivary_Gland 1e.05 0.034 (0.004)
BMI Minor_Salivary_Gland 1e.04 0.042 (0.004)
BMI Minor_Salivary_Gland 0.001 0.054 (0.004)
BMI Minor_Salivary_Gland 0.01 0.065 (0.004)
BMI Minor_Salivary_Gland 0.05 0.075 (0.004)
BMI Minor_Salivary_Gland 0.1 0.079 (0.004)
BMI Minor_Salivary_Gland 0.5 0.086 (0.004)
BMI Minor_Salivary_Gland 1 0.086 (0.004)
BMI Minor_Salivary_Gland All 0.085 (0.004)
BMI Muscle_Skeletal 1e.06 0.043 (0.004)
BMI Muscle_Skeletal 1e.05 0.047 (0.004)
BMI Muscle_Skeletal 1e.04 0.059 (0.004)
BMI Muscle_Skeletal 0.001 0.072 (0.004)
BMI Muscle_Skeletal 0.01 0.088 (0.004)
BMI Muscle_Skeletal 0.05 0.104 (0.004)
BMI Muscle_Skeletal 0.1 0.109 (0.004)
BMI Muscle_Skeletal 0.5 0.118 (0.004)
BMI Muscle_Skeletal 1 0.12 (0.004)
BMI Muscle_Skeletal All 0.12 (0.004)
BMI Nerve_Tibial 1e.06 0.048 (0.004)
BMI Nerve_Tibial 1e.05 0.057 (0.004)
BMI Nerve_Tibial 1e.04 0.065 (0.004)
BMI Nerve_Tibial 0.001 0.077 (0.004)
BMI Nerve_Tibial 0.01 0.096 (0.004)
BMI Nerve_Tibial 0.05 0.111 (0.004)
BMI Nerve_Tibial 0.1 0.117 (0.004)
BMI Nerve_Tibial 0.5 0.125 (0.004)
BMI Nerve_Tibial 1 0.126 (0.004)
BMI Nerve_Tibial All 0.127 (0.004)
BMI NTR.BLOOD.RNAARR 1e.06 0.039 (0.004)
BMI NTR.BLOOD.RNAARR 1e.05 0.044 (0.004)
BMI NTR.BLOOD.RNAARR 1e.04 0.052 (0.004)
BMI NTR.BLOOD.RNAARR 0.001 0.06 (0.004)
BMI NTR.BLOOD.RNAARR 0.01 0.071 (0.004)
BMI NTR.BLOOD.RNAARR 0.05 0.082 (0.004)
BMI NTR.BLOOD.RNAARR 0.1 0.085 (0.004)
BMI NTR.BLOOD.RNAARR 0.5 0.091 (0.004)
BMI NTR.BLOOD.RNAARR 1 0.092 (0.004)
BMI NTR.BLOOD.RNAARR All 0.094 (0.004)
BMI Ovary 1e.06 0.036 (0.004)
BMI Ovary 1e.05 0.038 (0.004)
BMI Ovary 1e.04 0.042 (0.004)
BMI Ovary 0.001 0.049 (0.004)
BMI Ovary 0.01 0.057 (0.004)
BMI Ovary 0.05 0.065 (0.004)
BMI Ovary 0.1 0.071 (0.004)
BMI Ovary 0.5 0.08 (0.004)
BMI Ovary 1 0.08 (0.004)
BMI Ovary All 0.084 (0.004)
BMI Pancreas 1e.06 0.046 (0.004)
BMI Pancreas 1e.05 0.052 (0.004)
BMI Pancreas 1e.04 0.059 (0.004)
BMI Pancreas 0.001 0.07 (0.004)
BMI Pancreas 0.01 0.088 (0.004)
BMI Pancreas 0.05 0.101 (0.004)
BMI Pancreas 0.1 0.107 (0.004)
BMI Pancreas 0.5 0.115 (0.004)
BMI Pancreas 1 0.115 (0.004)
BMI Pancreas All 0.116 (0.004)
BMI Pituitary 1e.06 0.031 (0.004)
BMI Pituitary 1e.05 0.034 (0.004)
BMI Pituitary 1e.04 0.043 (0.004)
BMI Pituitary 0.001 0.053 (0.004)
BMI Pituitary 0.01 0.069 (0.004)
BMI Pituitary 0.05 0.082 (0.004)
BMI Pituitary 0.1 0.088 (0.004)
BMI Pituitary 0.5 0.095 (0.004)
BMI Pituitary 1 0.095 (0.004)
BMI Pituitary All 0.099 (0.004)
BMI Prostate 1e.06 0.028 (0.004)
BMI Prostate 1e.05 0.031 (0.004)
BMI Prostate 1e.04 0.041 (0.004)
BMI Prostate 0.001 0.054 (0.004)
BMI Prostate 0.01 0.067 (0.004)
BMI Prostate 0.05 0.078 (0.004)
BMI Prostate 0.1 0.083 (0.004)
BMI Prostate 0.5 0.089 (0.004)
BMI Prostate 1 0.09 (0.004)
BMI Prostate All 0.093 (0.004)
BMI Skin_Not_Sun_Exposed_Suprapubic 1e.06 0.045 (0.004)
BMI Skin_Not_Sun_Exposed_Suprapubic 1e.05 0.049 (0.004)
BMI Skin_Not_Sun_Exposed_Suprapubic 1e.04 0.059 (0.004)
BMI Skin_Not_Sun_Exposed_Suprapubic 0.001 0.072 (0.004)
BMI Skin_Not_Sun_Exposed_Suprapubic 0.01 0.086 (0.004)
BMI Skin_Not_Sun_Exposed_Suprapubic 0.05 0.099 (0.004)
BMI Skin_Not_Sun_Exposed_Suprapubic 0.1 0.106 (0.004)
BMI Skin_Not_Sun_Exposed_Suprapubic 0.5 0.117 (0.004)
BMI Skin_Not_Sun_Exposed_Suprapubic 1 0.118 (0.004)
BMI Skin_Not_Sun_Exposed_Suprapubic All 0.118 (0.004)
BMI Skin_Sun_Exposed_Lower_leg 1e.06 0.044 (0.004)
BMI Skin_Sun_Exposed_Lower_leg 1e.05 0.053 (0.004)
BMI Skin_Sun_Exposed_Lower_leg 1e.04 0.06 (0.004)
BMI Skin_Sun_Exposed_Lower_leg 0.001 0.073 (0.004)
BMI Skin_Sun_Exposed_Lower_leg 0.01 0.088 (0.004)
BMI Skin_Sun_Exposed_Lower_leg 0.05 0.1 (0.004)
BMI Skin_Sun_Exposed_Lower_leg 0.1 0.106 (0.004)
BMI Skin_Sun_Exposed_Lower_leg 0.5 0.118 (0.004)
BMI Skin_Sun_Exposed_Lower_leg 1 0.119 (0.004)
BMI Skin_Sun_Exposed_Lower_leg All 0.12 (0.004)
BMI Small_Intestine_Terminal_Ileum 1e.06 0.036 (0.004)
BMI Small_Intestine_Terminal_Ileum 1e.05 0.039 (0.004)
BMI Small_Intestine_Terminal_Ileum 1e.04 0.049 (0.004)
BMI Small_Intestine_Terminal_Ileum 0.001 0.059 (0.004)
BMI Small_Intestine_Terminal_Ileum 0.01 0.072 (0.004)
BMI Small_Intestine_Terminal_Ileum 0.05 0.083 (0.004)
BMI Small_Intestine_Terminal_Ileum 0.1 0.086 (0.004)
BMI Small_Intestine_Terminal_Ileum 0.5 0.094 (0.004)
BMI Small_Intestine_Terminal_Ileum 1 0.095 (0.004)
BMI Small_Intestine_Terminal_Ileum All 0.095 (0.004)
BMI Spleen 1e.06 0.035 (0.004)
BMI Spleen 1e.05 0.038 (0.004)
BMI Spleen 1e.04 0.048 (0.004)
BMI Spleen 0.001 0.064 (0.004)
BMI Spleen 0.01 0.079 (0.004)
BMI Spleen 0.05 0.088 (0.004)
BMI Spleen 0.1 0.096 (0.004)
BMI Spleen 0.5 0.105 (0.004)
BMI Spleen 1 0.104 (0.004)
BMI Spleen All 0.108 (0.004)
BMI Stomach 1e.06 0.032 (0.004)
BMI Stomach 1e.05 0.038 (0.004)
BMI Stomach 1e.04 0.045 (0.004)
BMI Stomach 0.001 0.055 (0.004)
BMI Stomach 0.01 0.074 (0.004)
BMI Stomach 0.05 0.089 (0.004)
BMI Stomach 0.1 0.095 (0.004)
BMI Stomach 0.5 0.106 (0.004)
BMI Stomach 1 0.106 (0.004)
BMI Stomach All 0.111 (0.004)
BMI Testis 1e.06 0.035 (0.004)
BMI Testis 1e.05 0.038 (0.004)
BMI Testis 1e.04 0.047 (0.004)
BMI Testis 0.001 0.059 (0.004)
BMI Testis 0.01 0.078 (0.004)
BMI Testis 0.05 0.099 (0.004)
BMI Testis 0.1 0.108 (0.004)
BMI Testis 0.5 0.118 (0.004)
BMI Testis 1 0.119 (0.004)
BMI Testis All 0.125 (0.004)
BMI Thyroid 1e.06 0.039 (0.004)
BMI Thyroid 1e.05 0.047 (0.004)
BMI Thyroid 1e.04 0.056 (0.004)
BMI Thyroid 0.001 0.07 (0.004)
BMI Thyroid 0.01 0.089 (0.004)
BMI Thyroid 0.05 0.107 (0.004)
BMI Thyroid 0.1 0.114 (0.004)
BMI Thyroid 0.5 0.125 (0.004)
BMI Thyroid 1 0.126 (0.004)
BMI Thyroid All 0.128 (0.004)
BMI Uterus 1e.06 0.03 (0.004)
BMI Uterus 1e.05 0.036 (0.004)
BMI Uterus 1e.04 0.038 (0.004)
BMI Uterus 0.001 0.046 (0.004)
BMI Uterus 0.01 0.056 (0.004)
BMI Uterus 0.05 0.068 (0.004)
BMI Uterus 0.1 0.074 (0.004)
BMI Uterus 0.5 0.081 (0.004)
BMI Uterus 1 0.081 (0.004)
BMI Uterus All 0.083 (0.004)
BMI Vagina 1e.06 0.035 (0.004)
BMI Vagina 1e.05 0.037 (0.004)
BMI Vagina 1e.04 0.04 (0.004)
BMI Vagina 0.001 0.054 (0.004)
BMI Vagina 0.01 0.065 (0.004)
BMI Vagina 0.05 0.075 (0.004)
BMI Vagina 0.1 0.079 (0.004)
BMI Vagina 0.5 0.086 (0.004)
BMI Vagina 1 0.087 (0.004)
BMI Vagina All 0.088 (0.004)
BMI Whole_Blood 1e.06 0.038 (0.004)
BMI Whole_Blood 1e.05 0.048 (0.004)
BMI Whole_Blood 1e.04 0.053 (0.004)
BMI Whole_Blood 0.001 0.065 (0.004)
BMI Whole_Blood 0.01 0.08 (0.004)
BMI Whole_Blood 0.05 0.091 (0.004)
BMI Whole_Blood 0.1 0.096 (0.004)
BMI Whole_Blood 0.5 0.106 (0.004)
BMI Whole_Blood 1 0.108 (0.004)
BMI Whole_Blood All 0.11 (0.004)
BMI YFS.BLOOD.RNAARR 1e.06 0.045 (0.004)
BMI YFS.BLOOD.RNAARR 1e.05 0.05 (0.004)
BMI YFS.BLOOD.RNAARR 1e.04 0.057 (0.004)
BMI YFS.BLOOD.RNAARR 0.001 0.067 (0.004)
BMI YFS.BLOOD.RNAARR 0.01 0.079 (0.004)
BMI YFS.BLOOD.RNAARR 0.05 0.092 (0.004)
BMI YFS.BLOOD.RNAARR 0.1 0.098 (0.004)
BMI YFS.BLOOD.RNAARR 0.5 0.107 (0.004)
BMI YFS.BLOOD.RNAARR 1 0.108 (0.004)
BMI YFS.BLOOD.RNAARR All 0.107 (0.004)
Height Adipose_Subcutaneous 1e.06 0.143 (0.004)
Height Adipose_Subcutaneous 1e.05 0.149 (0.004)
Height Adipose_Subcutaneous 1e.04 0.155 (0.004)
Height Adipose_Subcutaneous 0.001 0.16 (0.004)
Height Adipose_Subcutaneous 0.01 0.169 (0.004)
Height Adipose_Subcutaneous 0.05 0.174 (0.004)
Height Adipose_Subcutaneous 0.1 0.176 (0.004)
Height Adipose_Subcutaneous 0.5 0.178 (0.004)
Height Adipose_Subcutaneous 1 0.178 (0.004)
Height Adipose_Subcutaneous All 0.179 (0.004)
Height Adipose_Visceral_Omentum 1e.06 0.128 (0.004)
Height Adipose_Visceral_Omentum 1e.05 0.135 (0.004)
Height Adipose_Visceral_Omentum 1e.04 0.141 (0.004)
Height Adipose_Visceral_Omentum 0.001 0.148 (0.004)
Height Adipose_Visceral_Omentum 0.01 0.156 (0.004)
Height Adipose_Visceral_Omentum 0.05 0.16 (0.004)
Height Adipose_Visceral_Omentum 0.1 0.161 (0.004)
Height Adipose_Visceral_Omentum 0.5 0.164 (0.004)
Height Adipose_Visceral_Omentum 1 0.164 (0.004)
Height Adipose_Visceral_Omentum All 0.164 (0.004)
Height Adrenal_Gland 1e.06 0.115 (0.004)
Height Adrenal_Gland 1e.05 0.12 (0.004)
Height Adrenal_Gland 1e.04 0.128 (0.004)
Height Adrenal_Gland 0.001 0.134 (0.004)
Height Adrenal_Gland 0.01 0.14 (0.004)
Height Adrenal_Gland 0.05 0.144 (0.004)
Height Adrenal_Gland 0.1 0.146 (0.004)
Height Adrenal_Gland 0.5 0.148 (0.004)
Height Adrenal_Gland 1 0.147 (0.004)
Height Adrenal_Gland All 0.148 (0.004)
Height Artery_Aorta 1e.06 0.125 (0.004)
Height Artery_Aorta 1e.05 0.132 (0.004)
Height Artery_Aorta 1e.04 0.137 (0.004)
Height Artery_Aorta 0.001 0.143 (0.004)
Height Artery_Aorta 0.01 0.152 (0.004)
Height Artery_Aorta 0.05 0.156 (0.004)
Height Artery_Aorta 0.1 0.158 (0.004)
Height Artery_Aorta 0.5 0.16 (0.004)
Height Artery_Aorta 1 0.161 (0.004)
Height Artery_Aorta All 0.16 (0.004)
Height Artery_Coronary 1e.06 0.105 (0.004)
Height Artery_Coronary 1e.05 0.114 (0.004)
Height Artery_Coronary 1e.04 0.118 (0.004)
Height Artery_Coronary 0.001 0.123 (0.004)
Height Artery_Coronary 0.01 0.128 (0.004)
Height Artery_Coronary 0.05 0.131 (0.004)
Height Artery_Coronary 0.1 0.133 (0.004)
Height Artery_Coronary 0.5 0.135 (0.004)
Height Artery_Coronary 1 0.135 (0.004)
Height Artery_Coronary All 0.136 (0.004)
Height Artery_Tibial 1e.06 0.142 (0.004)
Height Artery_Tibial 1e.05 0.149 (0.004)
Height Artery_Tibial 1e.04 0.156 (0.004)
Height Artery_Tibial 0.001 0.162 (0.004)
Height Artery_Tibial 0.01 0.17 (0.004)
Height Artery_Tibial 0.05 0.175 (0.004)
Height Artery_Tibial 0.1 0.178 (0.004)
Height Artery_Tibial 0.5 0.18 (0.004)
Height Artery_Tibial 1 0.18 (0.004)
Height Artery_Tibial All 0.18 (0.004)
Height Brain_Amygdala 1e.06 0.095 (0.004)
Height Brain_Amygdala 1e.05 0.101 (0.004)
Height Brain_Amygdala 1e.04 0.102 (0.004)
Height Brain_Amygdala 0.001 0.105 (0.004)
Height Brain_Amygdala 0.01 0.107 (0.004)
Height Brain_Amygdala 0.05 0.112 (0.004)
Height Brain_Amygdala 0.1 0.113 (0.004)
Height Brain_Amygdala 0.5 0.113 (0.004)
Height Brain_Amygdala 1 0.113 (0.004)
Height Brain_Amygdala All 0.114 (0.004)
Height Brain_Anterior_cingulate_cortex_BA24 1e.06 0.101 (0.004)
Height Brain_Anterior_cingulate_cortex_BA24 1e.05 0.105 (0.004)
Height Brain_Anterior_cingulate_cortex_BA24 1e.04 0.109 (0.004)
Height Brain_Anterior_cingulate_cortex_BA24 0.001 0.112 (0.004)
Height Brain_Anterior_cingulate_cortex_BA24 0.01 0.118 (0.004)
Height Brain_Anterior_cingulate_cortex_BA24 0.05 0.122 (0.004)
Height Brain_Anterior_cingulate_cortex_BA24 0.1 0.124 (0.004)
Height Brain_Anterior_cingulate_cortex_BA24 0.5 0.126 (0.004)
Height Brain_Anterior_cingulate_cortex_BA24 1 0.126 (0.004)
Height Brain_Anterior_cingulate_cortex_BA24 All 0.126 (0.004)
Height Brain_Caudate_basal_ganglia 1e.06 0.102 (0.004)
Height Brain_Caudate_basal_ganglia 1e.05 0.109 (0.004)
Height Brain_Caudate_basal_ganglia 1e.04 0.113 (0.004)
Height Brain_Caudate_basal_ganglia 0.001 0.116 (0.004)
Height Brain_Caudate_basal_ganglia 0.01 0.125 (0.004)
Height Brain_Caudate_basal_ganglia 0.05 0.129 (0.004)
Height Brain_Caudate_basal_ganglia 0.1 0.131 (0.004)
Height Brain_Caudate_basal_ganglia 0.5 0.132 (0.004)
Height Brain_Caudate_basal_ganglia 1 0.132 (0.004)
Height Brain_Caudate_basal_ganglia All 0.132 (0.004)
Height Brain_Cerebellar_Hemisphere 1e.06 0.108 (0.004)
Height Brain_Cerebellar_Hemisphere 1e.05 0.116 (0.004)
Height Brain_Cerebellar_Hemisphere 1e.04 0.117 (0.004)
Height Brain_Cerebellar_Hemisphere 0.001 0.124 (0.004)
Height Brain_Cerebellar_Hemisphere 0.01 0.13 (0.004)
Height Brain_Cerebellar_Hemisphere 0.05 0.132 (0.004)
Height Brain_Cerebellar_Hemisphere 0.1 0.134 (0.004)
Height Brain_Cerebellar_Hemisphere 0.5 0.134 (0.004)
Height Brain_Cerebellar_Hemisphere 1 0.134 (0.004)
Height Brain_Cerebellar_Hemisphere All 0.137 (0.004)
Height Brain_Cerebellum 1e.06 0.112 (0.004)
Height Brain_Cerebellum 1e.05 0.12 (0.004)
Height Brain_Cerebellum 1e.04 0.124 (0.004)
Height Brain_Cerebellum 0.001 0.128 (0.004)
Height Brain_Cerebellum 0.01 0.134 (0.004)
Height Brain_Cerebellum 0.05 0.14 (0.004)
Height Brain_Cerebellum 0.1 0.142 (0.004)
Height Brain_Cerebellum 0.5 0.145 (0.004)
Height Brain_Cerebellum 1 0.145 (0.004)
Height Brain_Cerebellum All 0.146 (0.004)
Height Brain_Cortex 1e.06 0.109 (0.004)
Height Brain_Cortex 1e.05 0.115 (0.004)
Height Brain_Cortex 1e.04 0.119 (0.004)
Height Brain_Cortex 0.001 0.125 (0.004)
Height Brain_Cortex 0.01 0.13 (0.004)
Height Brain_Cortex 0.05 0.134 (0.004)
Height Brain_Cortex 0.1 0.136 (0.004)
Height Brain_Cortex 0.5 0.138 (0.004)
Height Brain_Cortex 1 0.138 (0.004)
Height Brain_Cortex All 0.138 (0.004)
Height Brain_Frontal_Cortex_BA9 1e.06 0.106 (0.004)
Height Brain_Frontal_Cortex_BA9 1e.05 0.114 (0.004)
Height Brain_Frontal_Cortex_BA9 1e.04 0.117 (0.004)
Height Brain_Frontal_Cortex_BA9 0.001 0.12 (0.004)
Height Brain_Frontal_Cortex_BA9 0.01 0.127 (0.004)
Height Brain_Frontal_Cortex_BA9 0.05 0.131 (0.004)
Height Brain_Frontal_Cortex_BA9 0.1 0.133 (0.004)
Height Brain_Frontal_Cortex_BA9 0.5 0.134 (0.004)
Height Brain_Frontal_Cortex_BA9 1 0.134 (0.004)
Height Brain_Frontal_Cortex_BA9 All 0.135 (0.004)
Height Brain_Hippocampus 1e.06 0.083 (0.004)
Height Brain_Hippocampus 1e.05 0.089 (0.004)
Height Brain_Hippocampus 1e.04 0.097 (0.004)
Height Brain_Hippocampus 0.001 0.104 (0.004)
Height Brain_Hippocampus 0.01 0.108 (0.004)
Height Brain_Hippocampus 0.05 0.109 (0.004)
Height Brain_Hippocampus 0.1 0.111 (0.004)
Height Brain_Hippocampus 0.5 0.113 (0.004)
Height Brain_Hippocampus 1 0.113 (0.004)
Height Brain_Hippocampus All 0.112 (0.004)
Height Brain_Hypothalamus 1e.06 0.085 (0.004)
Height Brain_Hypothalamus 1e.05 0.093 (0.004)
Height Brain_Hypothalamus 1e.04 0.095 (0.004)
Height Brain_Hypothalamus 0.001 0.1 (0.004)
Height Brain_Hypothalamus 0.01 0.105 (0.004)
Height Brain_Hypothalamus 0.05 0.11 (0.004)
Height Brain_Hypothalamus 0.1 0.112 (0.004)
Height Brain_Hypothalamus 0.5 0.113 (0.004)
Height Brain_Hypothalamus 1 0.113 (0.004)
Height Brain_Hypothalamus All 0.113 (0.004)
Height Brain_Nucleus_accumbens_basal_ganglia 1e.06 0.1 (0.004)
Height Brain_Nucleus_accumbens_basal_ganglia 1e.05 0.105 (0.004)
Height Brain_Nucleus_accumbens_basal_ganglia 1e.04 0.105 (0.004)
Height Brain_Nucleus_accumbens_basal_ganglia 0.001 0.111 (0.004)
Height Brain_Nucleus_accumbens_basal_ganglia 0.01 0.114 (0.004)
Height Brain_Nucleus_accumbens_basal_ganglia 0.05 0.118 (0.004)
Height Brain_Nucleus_accumbens_basal_ganglia 0.1 0.12 (0.004)
Height Brain_Nucleus_accumbens_basal_ganglia 0.5 0.122 (0.004)
Height Brain_Nucleus_accumbens_basal_ganglia 1 0.122 (0.004)
Height Brain_Nucleus_accumbens_basal_ganglia All 0.125 (0.004)
Height Brain_Putamen_basal_ganglia 1e.06 0.096 (0.004)
Height Brain_Putamen_basal_ganglia 1e.05 0.101 (0.004)
Height Brain_Putamen_basal_ganglia 1e.04 0.106 (0.004)
Height Brain_Putamen_basal_ganglia 0.001 0.11 (0.004)
Height Brain_Putamen_basal_ganglia 0.01 0.116 (0.004)
Height Brain_Putamen_basal_ganglia 0.05 0.12 (0.004)
Height Brain_Putamen_basal_ganglia 0.1 0.121 (0.004)
Height Brain_Putamen_basal_ganglia 0.5 0.123 (0.004)
Height Brain_Putamen_basal_ganglia 1 0.123 (0.004)
Height Brain_Putamen_basal_ganglia All 0.123 (0.004)
Height Brain_Spinal_cord_cervical_c-1 1e.06 0.091 (0.004)
Height Brain_Spinal_cord_cervical_c-1 1e.05 0.093 (0.004)
Height Brain_Spinal_cord_cervical_c-1 1e.04 0.098 (0.004)
Height Brain_Spinal_cord_cervical_c-1 0.001 0.103 (0.004)
Height Brain_Spinal_cord_cervical_c-1 0.01 0.106 (0.004)
Height Brain_Spinal_cord_cervical_c-1 0.05 0.109 (0.004)
Height Brain_Spinal_cord_cervical_c-1 0.1 0.111 (0.004)
Height Brain_Spinal_cord_cervical_c-1 0.5 0.112 (0.004)
Height Brain_Spinal_cord_cervical_c-1 1 0.111 (0.004)
Height Brain_Spinal_cord_cervical_c-1 All 0.113 (0.004)
Height Brain_Substantia_nigra 1e.06 0.083 (0.004)
Height Brain_Substantia_nigra 1e.05 0.087 (0.004)
Height Brain_Substantia_nigra 1e.04 0.092 (0.004)
Height Brain_Substantia_nigra 0.001 0.096 (0.004)
Height Brain_Substantia_nigra 0.01 0.097 (0.004)
Height Brain_Substantia_nigra 0.05 0.099 (0.004)
Height Brain_Substantia_nigra 0.1 0.099 (0.004)
Height Brain_Substantia_nigra 0.5 0.1 (0.004)
Height Brain_Substantia_nigra 1 0.1 (0.004)
Height Brain_Substantia_nigra All 0.101 (0.004)
Height Breast_Mammary_Tissue 1e.06 0.123 (0.004)
Height Breast_Mammary_Tissue 1e.05 0.129 (0.004)
Height Breast_Mammary_Tissue 1e.04 0.135 (0.004)
Height Breast_Mammary_Tissue 0.001 0.138 (0.004)
Height Breast_Mammary_Tissue 0.01 0.145 (0.004)
Height Breast_Mammary_Tissue 0.05 0.149 (0.004)
Height Breast_Mammary_Tissue 0.1 0.15 (0.004)
Height Breast_Mammary_Tissue 0.5 0.152 (0.004)
Height Breast_Mammary_Tissue 1 0.152 (0.004)
Height Breast_Mammary_Tissue All 0.152 (0.004)
Height Cells_EBV-transformed_lymphocytes 1e.06 0.101 (0.004)
Height Cells_EBV-transformed_lymphocytes 1e.05 0.106 (0.004)
Height Cells_EBV-transformed_lymphocytes 1e.04 0.111 (0.004)
Height Cells_EBV-transformed_lymphocytes 0.001 0.113 (0.004)
Height Cells_EBV-transformed_lymphocytes 0.01 0.119 (0.004)
Height Cells_EBV-transformed_lymphocytes 0.05 0.125 (0.004)
Height Cells_EBV-transformed_lymphocytes 0.1 0.127 (0.004)
Height Cells_EBV-transformed_lymphocytes 0.5 0.13 (0.004)
Height Cells_EBV-transformed_lymphocytes 1 0.13 (0.004)
Height Cells_EBV-transformed_lymphocytes All 0.13 (0.004)
Height Cells_Transformed_fibroblasts 1e.06 0.126 (0.004)
Height Cells_Transformed_fibroblasts 1e.05 0.136 (0.004)
Height Cells_Transformed_fibroblasts 1e.04 0.144 (0.004)
Height Cells_Transformed_fibroblasts 0.001 0.15 (0.004)
Height Cells_Transformed_fibroblasts 0.01 0.16 (0.004)
Height Cells_Transformed_fibroblasts 0.05 0.165 (0.004)
Height Cells_Transformed_fibroblasts 0.1 0.167 (0.004)
Height Cells_Transformed_fibroblasts 0.5 0.17 (0.004)
Height Cells_Transformed_fibroblasts 1 0.17 (0.004)
Height Cells_Transformed_fibroblasts All 0.17 (0.004)
Height CMC.BRAIN.RNASEQ 1e.06 0.125 (0.004)
Height CMC.BRAIN.RNASEQ 1e.05 0.131 (0.004)
Height CMC.BRAIN.RNASEQ 1e.04 0.139 (0.004)
Height CMC.BRAIN.RNASEQ 0.001 0.147 (0.004)
Height CMC.BRAIN.RNASEQ 0.01 0.155 (0.004)
Height CMC.BRAIN.RNASEQ 0.05 0.162 (0.004)
Height CMC.BRAIN.RNASEQ 0.1 0.164 (0.004)
Height CMC.BRAIN.RNASEQ 0.5 0.165 (0.004)
Height CMC.BRAIN.RNASEQ 1 0.165 (0.004)
Height CMC.BRAIN.RNASEQ All 0.165 (0.004)
Height CMC.BRAIN.RNASEQ_SPLICING 1e.06 0.123 (0.004)
Height CMC.BRAIN.RNASEQ_SPLICING 1e.05 0.126 (0.004)
Height CMC.BRAIN.RNASEQ_SPLICING 1e.04 0.131 (0.004)
Height CMC.BRAIN.RNASEQ_SPLICING 0.001 0.135 (0.004)
Height CMC.BRAIN.RNASEQ_SPLICING 0.01 0.141 (0.004)
Height CMC.BRAIN.RNASEQ_SPLICING 0.05 0.144 (0.004)
Height CMC.BRAIN.RNASEQ_SPLICING 0.1 0.145 (0.004)
Height CMC.BRAIN.RNASEQ_SPLICING 0.5 0.145 (0.004)
Height CMC.BRAIN.RNASEQ_SPLICING 1 0.144 (0.004)
Height CMC.BRAIN.RNASEQ_SPLICING All 0.147 (0.004)
Height Colon_Sigmoid 1e.06 0.109 (0.004)
Height Colon_Sigmoid 1e.05 0.112 (0.004)
Height Colon_Sigmoid 1e.04 0.121 (0.004)
Height Colon_Sigmoid 0.001 0.126 (0.004)
Height Colon_Sigmoid 0.01 0.133 (0.004)
Height Colon_Sigmoid 0.05 0.137 (0.004)
Height Colon_Sigmoid 0.1 0.138 (0.004)
Height Colon_Sigmoid 0.5 0.141 (0.004)
Height Colon_Sigmoid 1 0.142 (0.004)
Height Colon_Sigmoid All 0.142 (0.004)
Height Colon_Transverse 1e.06 0.113 (0.004)
Height Colon_Transverse 1e.05 0.122 (0.004)
Height Colon_Transverse 1e.04 0.129 (0.004)
Height Colon_Transverse 0.001 0.135 (0.004)
Height Colon_Transverse 0.01 0.142 (0.004)
Height Colon_Transverse 0.05 0.147 (0.004)
Height Colon_Transverse 0.1 0.149 (0.004)
Height Colon_Transverse 0.5 0.149 (0.004)
Height Colon_Transverse 1 0.149 (0.004)
Height Colon_Transverse All 0.149 (0.004)
Height Esophagus_Gastroesophageal_Junction 1e.06 0.115 (0.004)
Height Esophagus_Gastroesophageal_Junction 1e.05 0.122 (0.004)
Height Esophagus_Gastroesophageal_Junction 1e.04 0.13 (0.004)
Height Esophagus_Gastroesophageal_Junction 0.001 0.133 (0.004)
Height Esophagus_Gastroesophageal_Junction 0.01 0.141 (0.004)
Height Esophagus_Gastroesophageal_Junction 0.05 0.146 (0.004)
Height Esophagus_Gastroesophageal_Junction 0.1 0.147 (0.004)
Height Esophagus_Gastroesophageal_Junction 0.5 0.149 (0.004)
Height Esophagus_Gastroesophageal_Junction 1 0.15 (0.004)
Height Esophagus_Gastroesophageal_Junction All 0.149 (0.004)
Height Esophagus_Mucosa 1e.06 0.132 (0.004)
Height Esophagus_Mucosa 1e.05 0.141 (0.004)
Height Esophagus_Mucosa 1e.04 0.149 (0.004)
Height Esophagus_Mucosa 0.001 0.158 (0.004)
Height Esophagus_Mucosa 0.01 0.167 (0.004)
Height Esophagus_Mucosa 0.05 0.172 (0.004)
Height Esophagus_Mucosa 0.1 0.174 (0.004)
Height Esophagus_Mucosa 0.5 0.176 (0.004)
Height Esophagus_Mucosa 1 0.176 (0.004)
Height Esophagus_Mucosa All 0.176 (0.004)
Height Esophagus_Muscularis 1e.06 0.129 (0.004)
Height Esophagus_Muscularis 1e.05 0.139 (0.004)
Height Esophagus_Muscularis 1e.04 0.146 (0.004)
Height Esophagus_Muscularis 0.001 0.152 (0.004)
Height Esophagus_Muscularis 0.01 0.16 (0.004)
Height Esophagus_Muscularis 0.05 0.165 (0.004)
Height Esophagus_Muscularis 0.1 0.168 (0.004)
Height Esophagus_Muscularis 0.5 0.17 (0.004)
Height Esophagus_Muscularis 1 0.169 (0.004)
Height Esophagus_Muscularis All 0.169 (0.004)
Height Heart_Atrial_Appendage 1e.06 0.115 (0.004)
Height Heart_Atrial_Appendage 1e.05 0.124 (0.004)
Height Heart_Atrial_Appendage 1e.04 0.132 (0.004)
Height Heart_Atrial_Appendage 0.001 0.138 (0.004)
Height Heart_Atrial_Appendage 0.01 0.145 (0.004)
Height Heart_Atrial_Appendage 0.05 0.153 (0.004)
Height Heart_Atrial_Appendage 0.1 0.155 (0.004)
Height Heart_Atrial_Appendage 0.5 0.156 (0.004)
Height Heart_Atrial_Appendage 1 0.156 (0.004)
Height Heart_Atrial_Appendage All 0.156 (0.004)
Height Heart_Left_Ventricle 1e.06 0.109 (0.004)
Height Heart_Left_Ventricle 1e.05 0.116 (0.004)
Height Heart_Left_Ventricle 1e.04 0.124 (0.004)
Height Heart_Left_Ventricle 0.001 0.13 (0.004)
Height Heart_Left_Ventricle 0.01 0.136 (0.004)
Height Heart_Left_Ventricle 0.05 0.142 (0.004)
Height Heart_Left_Ventricle 0.1 0.145 (0.004)
Height Heart_Left_Ventricle 0.5 0.148 (0.004)
Height Heart_Left_Ventricle 1 0.148 (0.004)
Height Heart_Left_Ventricle All 0.148 (0.004)
Height Liver 1e.06 0.104 (0.004)
Height Liver 1e.05 0.109 (0.004)
Height Liver 1e.04 0.119 (0.004)
Height Liver 0.001 0.121 (0.004)
Height Liver 0.01 0.126 (0.004)
Height Liver 0.05 0.129 (0.004)
Height Liver 0.1 0.13 (0.004)
Height Liver 0.5 0.132 (0.004)
Height Liver 1 0.132 (0.004)
Height Liver All 0.134 (0.004)
Height Lung 1e.06 0.13 (0.004)
Height Lung 1e.05 0.136 (0.004)
Height Lung 1e.04 0.144 (0.004)
Height Lung 0.001 0.15 (0.004)
Height Lung 0.01 0.159 (0.004)
Height Lung 0.05 0.165 (0.004)
Height Lung 0.1 0.167 (0.004)
Height Lung 0.5 0.169 (0.004)
Height Lung 1 0.169 (0.004)
Height Lung All 0.169 (0.004)
Height METSIM.ADIPOSE.RNASEQ 1e.06 0.118 (0.004)
Height METSIM.ADIPOSE.RNASEQ 1e.05 0.125 (0.004)
Height METSIM.ADIPOSE.RNASEQ 1e.04 0.132 (0.004)
Height METSIM.ADIPOSE.RNASEQ 0.001 0.137 (0.004)
Height METSIM.ADIPOSE.RNASEQ 0.01 0.144 (0.004)
Height METSIM.ADIPOSE.RNASEQ 0.05 0.149 (0.004)
Height METSIM.ADIPOSE.RNASEQ 0.1 0.15 (0.004)
Height METSIM.ADIPOSE.RNASEQ 0.5 0.152 (0.004)
Height METSIM.ADIPOSE.RNASEQ 1 0.152 (0.004)
Height METSIM.ADIPOSE.RNASEQ All 0.152 (0.004)
Height Minor_Salivary_Gland 1e.06 0.084 (0.004)
Height Minor_Salivary_Gland 1e.05 0.09 (0.004)
Height Minor_Salivary_Gland 1e.04 0.093 (0.004)
Height Minor_Salivary_Gland 0.001 0.098 (0.004)
Height Minor_Salivary_Gland 0.01 0.102 (0.004)
Height Minor_Salivary_Gland 0.05 0.108 (0.004)
Height Minor_Salivary_Gland 0.1 0.107 (0.004)
Height Minor_Salivary_Gland 0.5 0.109 (0.004)
Height Minor_Salivary_Gland 1 0.108 (0.004)
Height Minor_Salivary_Gland All 0.109 (0.004)
Height Muscle_Skeletal 1e.06 0.126 (0.004)
Height Muscle_Skeletal 1e.05 0.135 (0.004)
Height Muscle_Skeletal 1e.04 0.142 (0.004)
Height Muscle_Skeletal 0.001 0.149 (0.004)
Height Muscle_Skeletal 0.01 0.157 (0.004)
Height Muscle_Skeletal 0.05 0.164 (0.004)
Height Muscle_Skeletal 0.1 0.166 (0.004)
Height Muscle_Skeletal 0.5 0.169 (0.004)
Height Muscle_Skeletal 1 0.168 (0.004)
Height Muscle_Skeletal All 0.168 (0.004)
Height Nerve_Tibial 1e.06 0.144 (0.004)
Height Nerve_Tibial 1e.05 0.149 (0.004)
Height Nerve_Tibial 1e.04 0.156 (0.004)
Height Nerve_Tibial 0.001 0.163 (0.004)
Height Nerve_Tibial 0.01 0.173 (0.004)
Height Nerve_Tibial 0.05 0.179 (0.004)
Height Nerve_Tibial 0.1 0.181 (0.004)
Height Nerve_Tibial 0.5 0.182 (0.004)
Height Nerve_Tibial 1 0.182 (0.004)
Height Nerve_Tibial All 0.182 (0.004)
Height NTR.BLOOD.RNAARR 1e.06 0.108 (0.004)
Height NTR.BLOOD.RNAARR 1e.05 0.113 (0.004)
Height NTR.BLOOD.RNAARR 1e.04 0.119 (0.004)
Height NTR.BLOOD.RNAARR 0.001 0.124 (0.004)
Height NTR.BLOOD.RNAARR 0.01 0.131 (0.004)
Height NTR.BLOOD.RNAARR 0.05 0.136 (0.004)
Height NTR.BLOOD.RNAARR 0.1 0.137 (0.004)
Height NTR.BLOOD.RNAARR 0.5 0.138 (0.004)
Height NTR.BLOOD.RNAARR 1 0.138 (0.004)
Height NTR.BLOOD.RNAARR All 0.139 (0.004)
Height Ovary 1e.06 0.084 (0.004)
Height Ovary 1e.05 0.092 (0.004)
Height Ovary 1e.04 0.096 (0.004)
Height Ovary 0.001 0.103 (0.004)
Height Ovary 0.01 0.111 (0.004)
Height Ovary 0.05 0.116 (0.004)
Height Ovary 0.1 0.118 (0.004)
Height Ovary 0.5 0.12 (0.004)
Height Ovary 1 0.12 (0.004)
Height Ovary All 0.12 (0.004)
Height Pancreas 1e.06 0.117 (0.004)
Height Pancreas 1e.05 0.125 (0.004)
Height Pancreas 1e.04 0.131 (0.004)
Height Pancreas 0.001 0.137 (0.004)
Height Pancreas 0.01 0.146 (0.004)
Height Pancreas 0.05 0.153 (0.004)
Height Pancreas 0.1 0.154 (0.004)
Height Pancreas 0.5 0.154 (0.004)
Height Pancreas 1 0.155 (0.004)
Height Pancreas All 0.155 (0.004)
Height Pituitary 1e.06 0.113 (0.004)
Height Pituitary 1e.05 0.121 (0.004)
Height Pituitary 1e.04 0.124 (0.004)
Height Pituitary 0.001 0.131 (0.004)
Height Pituitary 0.01 0.136 (0.004)
Height Pituitary 0.05 0.139 (0.004)
Height Pituitary 0.1 0.141 (0.004)
Height Pituitary 0.5 0.142 (0.004)
Height Pituitary 1 0.142 (0.004)
Height Pituitary All 0.143 (0.004)
Height Prostate 1e.06 0.08 (0.004)
Height Prostate 1e.05 0.087 (0.004)
Height Prostate 1e.04 0.095 (0.004)
Height Prostate 0.001 0.099 (0.004)
Height Prostate 0.01 0.106 (0.004)
Height Prostate 0.05 0.11 (0.004)
Height Prostate 0.1 0.111 (0.004)
Height Prostate 0.5 0.114 (0.004)
Height Prostate 1 0.113 (0.004)
Height Prostate All 0.113 (0.004)
Height Skin_Not_Sun_Exposed_Suprapubic 1e.06 0.128 (0.004)
Height Skin_Not_Sun_Exposed_Suprapubic 1e.05 0.136 (0.004)
Height Skin_Not_Sun_Exposed_Suprapubic 1e.04 0.143 (0.004)
Height Skin_Not_Sun_Exposed_Suprapubic 0.001 0.149 (0.004)
Height Skin_Not_Sun_Exposed_Suprapubic 0.01 0.157 (0.004)
Height Skin_Not_Sun_Exposed_Suprapubic 0.05 0.164 (0.004)
Height Skin_Not_Sun_Exposed_Suprapubic 0.1 0.165 (0.004)
Height Skin_Not_Sun_Exposed_Suprapubic 0.5 0.168 (0.004)
Height Skin_Not_Sun_Exposed_Suprapubic 1 0.168 (0.004)
Height Skin_Not_Sun_Exposed_Suprapubic All 0.167 (0.004)
Height Skin_Sun_Exposed_Lower_leg 1e.06 0.137 (0.004)
Height Skin_Sun_Exposed_Lower_leg 1e.05 0.145 (0.004)
Height Skin_Sun_Exposed_Lower_leg 1e.04 0.152 (0.004)
Height Skin_Sun_Exposed_Lower_leg 0.001 0.156 (0.004)
Height Skin_Sun_Exposed_Lower_leg 0.01 0.167 (0.004)
Height Skin_Sun_Exposed_Lower_leg 0.05 0.172 (0.004)
Height Skin_Sun_Exposed_Lower_leg 0.1 0.173 (0.004)
Height Skin_Sun_Exposed_Lower_leg 0.5 0.174 (0.004)
Height Skin_Sun_Exposed_Lower_leg 1 0.175 (0.004)
Height Skin_Sun_Exposed_Lower_leg All 0.175 (0.004)
Height Small_Intestine_Terminal_Ileum 1e.06 0.098 (0.004)
Height Small_Intestine_Terminal_Ileum 1e.05 0.103 (0.004)
Height Small_Intestine_Terminal_Ileum 1e.04 0.104 (0.004)
Height Small_Intestine_Terminal_Ileum 0.001 0.113 (0.004)
Height Small_Intestine_Terminal_Ileum 0.01 0.116 (0.004)
Height Small_Intestine_Terminal_Ileum 0.05 0.12 (0.004)
Height Small_Intestine_Terminal_Ileum 0.1 0.121 (0.004)
Height Small_Intestine_Terminal_Ileum 0.5 0.125 (0.004)
Height Small_Intestine_Terminal_Ileum 1 0.125 (0.004)
Height Small_Intestine_Terminal_Ileum All 0.126 (0.004)
Height Spleen 1e.06 0.115 (0.004)
Height Spleen 1e.05 0.121 (0.004)
Height Spleen 1e.04 0.126 (0.004)
Height Spleen 0.001 0.13 (0.004)
Height Spleen 0.01 0.138 (0.004)
Height Spleen 0.05 0.141 (0.004)
Height Spleen 0.1 0.142 (0.004)
Height Spleen 0.5 0.143 (0.004)
Height Spleen 1 0.143 (0.004)
Height Spleen All 0.145 (0.004)
Height Stomach 1e.06 0.117 (0.004)
Height Stomach 1e.05 0.123 (0.004)
Height Stomach 1e.04 0.132 (0.004)
Height Stomach 0.001 0.137 (0.004)
Height Stomach 0.01 0.143 (0.004)
Height Stomach 0.05 0.147 (0.004)
Height Stomach 0.1 0.148 (0.004)
Height Stomach 0.5 0.151 (0.004)
Height Stomach 1 0.15 (0.004)
Height Stomach All 0.151 (0.004)
Height Testis 1e.06 0.138 (0.004)
Height Testis 1e.05 0.145 (0.004)
Height Testis 1e.04 0.152 (0.004)
Height Testis 0.001 0.159 (0.004)
Height Testis 0.01 0.165 (0.004)
Height Testis 0.05 0.169 (0.004)
Height Testis 0.1 0.171 (0.004)
Height Testis 0.5 0.174 (0.004)
Height Testis 1 0.174 (0.004)
Height Testis All 0.176 (0.004)
Height Thyroid 1e.06 0.141 (0.004)
Height Thyroid 1e.05 0.148 (0.004)
Height Thyroid 1e.04 0.155 (0.004)
Height Thyroid 0.001 0.161 (0.004)
Height Thyroid 0.01 0.17 (0.004)
Height Thyroid 0.05 0.175 (0.004)
Height Thyroid 0.1 0.177 (0.004)
Height Thyroid 0.5 0.181 (0.004)
Height Thyroid 1 0.181 (0.004)
Height Thyroid All 0.181 (0.004)
Height Uterus 1e.06 0.074 (0.004)
Height Uterus 1e.05 0.08 (0.004)
Height Uterus 1e.04 0.084 (0.004)
Height Uterus 0.001 0.091 (0.004)
Height Uterus 0.01 0.099 (0.004)
Height Uterus 0.05 0.102 (0.004)
Height Uterus 0.1 0.104 (0.004)
Height Uterus 0.5 0.107 (0.004)
Height Uterus 1 0.107 (0.004)
Height Uterus All 0.107 (0.004)
Height Vagina 1e.06 0.075 (0.004)
Height Vagina 1e.05 0.081 (0.004)
Height Vagina 1e.04 0.09 (0.004)
Height Vagina 0.001 0.091 (0.004)
Height Vagina 0.01 0.098 (0.004)
Height Vagina 0.05 0.104 (0.004)
Height Vagina 0.1 0.106 (0.004)
Height Vagina 0.5 0.107 (0.004)
Height Vagina 1 0.108 (0.004)
Height Vagina All 0.109 (0.004)
Height Whole_Blood 1e.06 0.125 (0.004)
Height Whole_Blood 1e.05 0.133 (0.004)
Height Whole_Blood 1e.04 0.139 (0.004)
Height Whole_Blood 0.001 0.148 (0.004)
Height Whole_Blood 0.01 0.155 (0.004)
Height Whole_Blood 0.05 0.159 (0.004)
Height Whole_Blood 0.1 0.16 (0.004)
Height Whole_Blood 0.5 0.162 (0.004)
Height Whole_Blood 1 0.162 (0.004)
Height Whole_Blood All 0.162 (0.004)
Height YFS.BLOOD.RNAARR 1e.06 0.124 (0.004)
Height YFS.BLOOD.RNAARR 1e.05 0.132 (0.004)
Height YFS.BLOOD.RNAARR 1e.04 0.138 (0.004)
Height YFS.BLOOD.RNAARR 0.001 0.146 (0.004)
Height YFS.BLOOD.RNAARR 0.01 0.152 (0.004)
Height YFS.BLOOD.RNAARR 0.05 0.16 (0.004)
Height YFS.BLOOD.RNAARR 0.1 0.162 (0.004)
Height YFS.BLOOD.RNAARR 0.5 0.163 (0.004)
Height YFS.BLOOD.RNAARR 1 0.164 (0.004)
Height YFS.BLOOD.RNAARR All 0.164 (0.004)
T2D Adipose_Subcutaneous 1e.06 0.064 (0.004)
T2D Adipose_Subcutaneous 1e.05 0.069 (0.004)
T2D Adipose_Subcutaneous 1e.04 0.066 (0.004)
T2D Adipose_Subcutaneous 0.001 0.069 (0.004)
T2D Adipose_Subcutaneous 0.01 0.082 (0.004)
T2D Adipose_Subcutaneous 0.05 0.087 (0.004)
T2D Adipose_Subcutaneous 0.1 0.092 (0.004)
T2D Adipose_Subcutaneous 0.5 0.096 (0.004)
T2D Adipose_Subcutaneous 1 0.096 (0.004)
T2D Adipose_Subcutaneous All 0.11 (0.004)
T2D Adipose_Visceral_Omentum 1e.06 0.039 (0.004)
T2D Adipose_Visceral_Omentum 1e.05 0.039 (0.004)
T2D Adipose_Visceral_Omentum 1e.04 0.053 (0.004)
T2D Adipose_Visceral_Omentum 0.001 0.06 (0.004)
T2D Adipose_Visceral_Omentum 0.01 0.066 (0.004)
T2D Adipose_Visceral_Omentum 0.05 0.074 (0.004)
T2D Adipose_Visceral_Omentum 0.1 0.074 (0.004)
T2D Adipose_Visceral_Omentum 0.5 0.081 (0.004)
T2D Adipose_Visceral_Omentum 1 0.081 (0.004)
T2D Adipose_Visceral_Omentum All 0.088 (0.004)
T2D Adrenal_Gland 1e.06 0.042 (0.004)
T2D Adrenal_Gland 1e.05 0.044 (0.004)
T2D Adrenal_Gland 1e.04 0.049 (0.004)
T2D Adrenal_Gland 0.001 0.053 (0.004)
T2D Adrenal_Gland 0.01 0.06 (0.004)
T2D Adrenal_Gland 0.05 0.07 (0.004)
T2D Adrenal_Gland 0.1 0.075 (0.004)
T2D Adrenal_Gland 0.5 0.075 (0.004)
T2D Adrenal_Gland 1 0.075 (0.004)
T2D Adrenal_Gland All 0.082 (0.004)
T2D Artery_Aorta 1e.06 0.062 (0.004)
T2D Artery_Aorta 1e.05 0.067 (0.004)
T2D Artery_Aorta 1e.04 0.068 (0.004)
T2D Artery_Aorta 0.001 0.068 (0.004)
T2D Artery_Aorta 0.01 0.08 (0.004)
T2D Artery_Aorta 0.05 0.084 (0.004)
T2D Artery_Aorta 0.1 0.084 (0.004)
T2D Artery_Aorta 0.5 0.086 (0.004)
T2D Artery_Aorta 1 0.085 (0.004)
T2D Artery_Aorta All 0.101 (0.004)
T2D Artery_Coronary 1e.06 0.01 (0.004)
T2D Artery_Coronary 1e.05 0.03 (0.004)
T2D Artery_Coronary 1e.04 0.033 (0.004)
T2D Artery_Coronary 0.001 0.045 (0.004)
T2D Artery_Coronary 0.01 0.054 (0.004)
T2D Artery_Coronary 0.05 0.064 (0.004)
T2D Artery_Coronary 0.1 0.066 (0.004)
T2D Artery_Coronary 0.5 0.065 (0.004)
T2D Artery_Coronary 1 0.064 (0.004)
T2D Artery_Coronary All 0.069 (0.004)
T2D Artery_Tibial 1e.06 0.045 (0.004)
T2D Artery_Tibial 1e.05 0.054 (0.004)
T2D Artery_Tibial 1e.04 0.062 (0.004)
T2D Artery_Tibial 0.001 0.068 (0.004)
T2D Artery_Tibial 0.01 0.084 (0.004)
T2D Artery_Tibial 0.05 0.093 (0.004)
T2D Artery_Tibial 0.1 0.096 (0.004)
T2D Artery_Tibial 0.5 0.1 (0.004)
T2D Artery_Tibial 1 0.099 (0.004)
T2D Artery_Tibial All 0.107 (0.004)
T2D Brain_Amygdala 1e.06 0.024 (0.004)
T2D Brain_Amygdala 1e.05 0.034 (0.004)
T2D Brain_Amygdala 1e.04 0.037 (0.004)
T2D Brain_Amygdala 0.001 0.037 (0.004)
T2D Brain_Amygdala 0.01 0.053 (0.004)
T2D Brain_Amygdala 0.05 0.058 (0.004)
T2D Brain_Amygdala 0.1 0.061 (0.004)
T2D Brain_Amygdala 0.5 0.062 (0.004)
T2D Brain_Amygdala 1 0.062 (0.004)
T2D Brain_Amygdala All 0.067 (0.004)
T2D Brain_Anterior_cingulate_cortex_BA24 1e.06 0.026 (0.004)
T2D Brain_Anterior_cingulate_cortex_BA24 1e.05 0.028 (0.004)
T2D Brain_Anterior_cingulate_cortex_BA24 1e.04 0.034 (0.004)
T2D Brain_Anterior_cingulate_cortex_BA24 0.001 0.043 (0.004)
T2D Brain_Anterior_cingulate_cortex_BA24 0.01 0.058 (0.004)
T2D Brain_Anterior_cingulate_cortex_BA24 0.05 0.066 (0.004)
T2D Brain_Anterior_cingulate_cortex_BA24 0.1 0.065 (0.004)
T2D Brain_Anterior_cingulate_cortex_BA24 0.5 0.062 (0.004)
T2D Brain_Anterior_cingulate_cortex_BA24 1 0.062 (0.004)
T2D Brain_Anterior_cingulate_cortex_BA24 All 0.069 (0.004)
T2D Brain_Caudate_basal_ganglia 1e.05 0.022 (0.004)
T2D Brain_Caudate_basal_ganglia 1e.04 0.035 (0.004)
T2D Brain_Caudate_basal_ganglia 0.001 0.041 (0.004)
T2D Brain_Caudate_basal_ganglia 0.01 0.055 (0.004)
T2D Brain_Caudate_basal_ganglia 0.05 0.062 (0.004)
T2D Brain_Caudate_basal_ganglia 0.1 0.061 (0.004)
T2D Brain_Caudate_basal_ganglia 0.5 0.067 (0.004)
T2D Brain_Caudate_basal_ganglia 1 0.066 (0.004)
T2D Brain_Caudate_basal_ganglia All 0.07 (0.004)
T2D Brain_Cerebellar_Hemisphere 1e.06 0.038 (0.004)
T2D Brain_Cerebellar_Hemisphere 1e.05 0.046 (0.004)
T2D Brain_Cerebellar_Hemisphere 1e.04 0.046 (0.004)
T2D Brain_Cerebellar_Hemisphere 0.001 0.056 (0.004)
T2D Brain_Cerebellar_Hemisphere 0.01 0.066 (0.004)
T2D Brain_Cerebellar_Hemisphere 0.05 0.07 (0.004)
T2D Brain_Cerebellar_Hemisphere 0.1 0.07 (0.004)
T2D Brain_Cerebellar_Hemisphere 0.5 0.071 (0.004)
T2D Brain_Cerebellar_Hemisphere 1 0.071 (0.004)
T2D Brain_Cerebellar_Hemisphere All 0.081 (0.004)
T2D Brain_Cerebellum 1e.06 0.03 (0.004)
T2D Brain_Cerebellum 1e.05 0.039 (0.004)
T2D Brain_Cerebellum 1e.04 0.048 (0.004)
T2D Brain_Cerebellum 0.001 0.058 (0.004)
T2D Brain_Cerebellum 0.01 0.065 (0.004)
T2D Brain_Cerebellum 0.05 0.074 (0.004)
T2D Brain_Cerebellum 0.1 0.078 (0.004)
T2D Brain_Cerebellum 0.5 0.078 (0.004)
T2D Brain_Cerebellum 1 0.079 (0.004)
T2D Brain_Cerebellum All 0.084 (0.004)
T2D Brain_Cortex 1e.06 0.016 (0.004)
T2D Brain_Cortex 1e.05 0.024 (0.004)
T2D Brain_Cortex 1e.04 0.039 (0.004)
T2D Brain_Cortex 0.001 0.038 (0.004)
T2D Brain_Cortex 0.01 0.054 (0.004)
T2D Brain_Cortex 0.05 0.059 (0.004)
T2D Brain_Cortex 0.1 0.06 (0.004)
T2D Brain_Cortex 0.5 0.068 (0.004)
T2D Brain_Cortex 1 0.068 (0.004)
T2D Brain_Cortex All 0.07 (0.004)
T2D Brain_Frontal_Cortex_BA9 1e.06 0.018 (0.004)
T2D Brain_Frontal_Cortex_BA9 1e.05 0.018 (0.004)
T2D Brain_Frontal_Cortex_BA9 1e.04 0.034 (0.004)
T2D Brain_Frontal_Cortex_BA9 0.001 0.038 (0.004)
T2D Brain_Frontal_Cortex_BA9 0.01 0.054 (0.004)
T2D Brain_Frontal_Cortex_BA9 0.05 0.059 (0.004)
T2D Brain_Frontal_Cortex_BA9 0.1 0.064 (0.004)
T2D Brain_Frontal_Cortex_BA9 0.5 0.068 (0.004)
T2D Brain_Frontal_Cortex_BA9 1 0.067 (0.004)
T2D Brain_Frontal_Cortex_BA9 All 0.071 (0.004)
T2D Brain_Hippocampus 1e.06 0.012 (0.004)
T2D Brain_Hippocampus 1e.05 0.023 (0.004)
T2D Brain_Hippocampus 1e.04 0.025 (0.004)
T2D Brain_Hippocampus 0.001 0.038 (0.004)
T2D Brain_Hippocampus 0.01 0.045 (0.004)
T2D Brain_Hippocampus 0.05 0.055 (0.004)
T2D Brain_Hippocampus 0.1 0.054 (0.004)
T2D Brain_Hippocampus 0.5 0.058 (0.004)
T2D Brain_Hippocampus 1 0.057 (0.004)
T2D Brain_Hippocampus All 0.062 (0.004)
T2D Brain_Hypothalamus 1e.06 0.029 (0.004)
T2D Brain_Hypothalamus 1e.05 0.029 (0.004)
T2D Brain_Hypothalamus 1e.04 0.029 (0.004)
T2D Brain_Hypothalamus 0.001 0.039 (0.004)
T2D Brain_Hypothalamus 0.01 0.048 (0.004)
T2D Brain_Hypothalamus 0.05 0.05 (0.004)
T2D Brain_Hypothalamus 0.1 0.055 (0.004)
T2D Brain_Hypothalamus 0.5 0.057 (0.004)
T2D Brain_Hypothalamus 1 0.056 (0.004)
T2D Brain_Hypothalamus All 0.061 (0.004)
T2D Brain_Nucleus_accumbens_basal_ganglia 1e.05 0.025 (0.004)
T2D Brain_Nucleus_accumbens_basal_ganglia 1e.04 0.037 (0.004)
T2D Brain_Nucleus_accumbens_basal_ganglia 0.001 0.043 (0.004)
T2D Brain_Nucleus_accumbens_basal_ganglia 0.01 0.06 (0.004)
T2D Brain_Nucleus_accumbens_basal_ganglia 0.05 0.06 (0.004)
T2D Brain_Nucleus_accumbens_basal_ganglia 0.1 0.062 (0.004)
T2D Brain_Nucleus_accumbens_basal_ganglia 0.5 0.068 (0.004)
T2D Brain_Nucleus_accumbens_basal_ganglia 1 0.067 (0.004)
T2D Brain_Nucleus_accumbens_basal_ganglia All 0.072 (0.004)
T2D Brain_Putamen_basal_ganglia 1e.06 0.015 (0.004)
T2D Brain_Putamen_basal_ganglia 1e.05 0.02 (0.004)
T2D Brain_Putamen_basal_ganglia 1e.04 0.028 (0.004)
T2D Brain_Putamen_basal_ganglia 0.001 0.037 (0.004)
T2D Brain_Putamen_basal_ganglia 0.01 0.049 (0.004)
T2D Brain_Putamen_basal_ganglia 0.05 0.053 (0.004)
T2D Brain_Putamen_basal_ganglia 0.1 0.059 (0.004)
T2D Brain_Putamen_basal_ganglia 0.5 0.065 (0.004)
T2D Brain_Putamen_basal_ganglia 1 0.065 (0.004)
T2D Brain_Putamen_basal_ganglia All 0.067 (0.004)
T2D Brain_Spinal_cord_cervical_c-1 1e.06 0.011 (0.004)
T2D Brain_Spinal_cord_cervical_c-1 1e.05 0.014 (0.004)
T2D Brain_Spinal_cord_cervical_c-1 1e.04 0.032 (0.004)
T2D Brain_Spinal_cord_cervical_c-1 0.001 0.038 (0.004)
T2D Brain_Spinal_cord_cervical_c-1 0.01 0.05 (0.004)
T2D Brain_Spinal_cord_cervical_c-1 0.05 0.057 (0.004)
T2D Brain_Spinal_cord_cervical_c-1 0.1 0.056 (0.004)
T2D Brain_Spinal_cord_cervical_c-1 0.5 0.056 (0.004)
T2D Brain_Spinal_cord_cervical_c-1 1 0.056 (0.004)
T2D Brain_Spinal_cord_cervical_c-1 All 0.061 (0.004)
T2D Brain_Substantia_nigra 1e.06 0.021 (0.004)
T2D Brain_Substantia_nigra 1e.05 0.022 (0.004)
T2D Brain_Substantia_nigra 1e.04 0.026 (0.004)
T2D Brain_Substantia_nigra 0.001 0.03 (0.004)
T2D Brain_Substantia_nigra 0.01 0.032 (0.004)
T2D Brain_Substantia_nigra 0.05 0.041 (0.004)
T2D Brain_Substantia_nigra 0.1 0.04 (0.004)
T2D Brain_Substantia_nigra 0.5 0.045 (0.004)
T2D Brain_Substantia_nigra 1 0.047 (0.004)
T2D Brain_Substantia_nigra All 0.049 (0.004)
T2D Breast_Mammary_Tissue 1e.06 0.046 (0.004)
T2D Breast_Mammary_Tissue 1e.05 0.051 (0.004)
T2D Breast_Mammary_Tissue 1e.04 0.054 (0.004)
T2D Breast_Mammary_Tissue 0.001 0.061 (0.004)
T2D Breast_Mammary_Tissue 0.01 0.074 (0.004)
T2D Breast_Mammary_Tissue 0.05 0.076 (0.004)
T2D Breast_Mammary_Tissue 0.1 0.078 (0.004)
T2D Breast_Mammary_Tissue 0.5 0.082 (0.004)
T2D Breast_Mammary_Tissue 1 0.08 (0.004)
T2D Breast_Mammary_Tissue All 0.088 (0.004)
T2D Cells_EBV-transformed_lymphocytes 1e.06 0.018 (0.004)
T2D Cells_EBV-transformed_lymphocytes 1e.05 0.027 (0.004)
T2D Cells_EBV-transformed_lymphocytes 1e.04 0.032 (0.004)
T2D Cells_EBV-transformed_lymphocytes 0.001 0.036 (0.004)
T2D Cells_EBV-transformed_lymphocytes 0.01 0.047 (0.004)
T2D Cells_EBV-transformed_lymphocytes 0.05 0.058 (0.004)
T2D Cells_EBV-transformed_lymphocytes 0.1 0.057 (0.004)
T2D Cells_EBV-transformed_lymphocytes 0.5 0.06 (0.004)
T2D Cells_EBV-transformed_lymphocytes 1 0.061 (0.004)
T2D Cells_EBV-transformed_lymphocytes All 0.063 (0.004)
T2D Cells_Transformed_fibroblasts 1e.06 0.049 (0.004)
T2D Cells_Transformed_fibroblasts 1e.05 0.056 (0.004)
T2D Cells_Transformed_fibroblasts 1e.04 0.065 (0.004)
T2D Cells_Transformed_fibroblasts 0.001 0.07 (0.004)
T2D Cells_Transformed_fibroblasts 0.01 0.078 (0.004)
T2D Cells_Transformed_fibroblasts 0.05 0.086 (0.004)
T2D Cells_Transformed_fibroblasts 0.1 0.09 (0.004)
T2D Cells_Transformed_fibroblasts 0.5 0.097 (0.004)
T2D Cells_Transformed_fibroblasts 1 0.098 (0.004)
T2D Cells_Transformed_fibroblasts All 0.104 (0.004)
T2D CMC.BRAIN.RNASEQ 1e.06 0.045 (0.004)
T2D CMC.BRAIN.RNASEQ 1e.05 0.056 (0.004)
T2D CMC.BRAIN.RNASEQ 1e.04 0.059 (0.004)
T2D CMC.BRAIN.RNASEQ 0.001 0.069 (0.004)
T2D CMC.BRAIN.RNASEQ 0.01 0.077 (0.004)
T2D CMC.BRAIN.RNASEQ 0.05 0.086 (0.004)
T2D CMC.BRAIN.RNASEQ 0.1 0.091 (0.004)
T2D CMC.BRAIN.RNASEQ 0.5 0.097 (0.004)
T2D CMC.BRAIN.RNASEQ 1 0.096 (0.004)
T2D CMC.BRAIN.RNASEQ All 0.104 (0.004)
T2D CMC.BRAIN.RNASEQ_SPLICING 1e.06 0.029 (0.004)
T2D CMC.BRAIN.RNASEQ_SPLICING 1e.05 0.044 (0.004)
T2D CMC.BRAIN.RNASEQ_SPLICING 1e.04 0.049 (0.004)
T2D CMC.BRAIN.RNASEQ_SPLICING 0.001 0.056 (0.004)
T2D CMC.BRAIN.RNASEQ_SPLICING 0.01 0.062 (0.004)
T2D CMC.BRAIN.RNASEQ_SPLICING 0.05 0.071 (0.004)
T2D CMC.BRAIN.RNASEQ_SPLICING 0.1 0.073 (0.004)
T2D CMC.BRAIN.RNASEQ_SPLICING 0.5 0.076 (0.004)
T2D CMC.BRAIN.RNASEQ_SPLICING 1 0.075 (0.004)
T2D CMC.BRAIN.RNASEQ_SPLICING All 0.084 (0.004)
T2D Colon_Sigmoid 1e.06 0.03 (0.004)
T2D Colon_Sigmoid 1e.05 0.033 (0.004)
T2D Colon_Sigmoid 1e.04 0.037 (0.004)
T2D Colon_Sigmoid 0.001 0.053 (0.004)
T2D Colon_Sigmoid 0.01 0.059 (0.004)
T2D Colon_Sigmoid 0.05 0.066 (0.004)
T2D Colon_Sigmoid 0.1 0.068 (0.004)
T2D Colon_Sigmoid 0.5 0.072 (0.004)
T2D Colon_Sigmoid 1 0.071 (0.004)
T2D Colon_Sigmoid All 0.076 (0.004)
T2D Colon_Transverse 1e.06 0.014 (0.004)
T2D Colon_Transverse 1e.05 0.031 (0.004)
T2D Colon_Transverse 1e.04 0.035 (0.004)
T2D Colon_Transverse 0.001 0.04 (0.004)
T2D Colon_Transverse 0.01 0.057 (0.004)
T2D Colon_Transverse 0.05 0.072 (0.004)
T2D Colon_Transverse 0.1 0.077 (0.004)
T2D Colon_Transverse 0.5 0.08 (0.004)
T2D Colon_Transverse 1 0.079 (0.004)
T2D Colon_Transverse All 0.083 (0.004)
T2D Esophagus_Gastroesophageal_Junction 1e.06 0.04 (0.004)
T2D Esophagus_Gastroesophageal_Junction 1e.05 0.042 (0.004)
T2D Esophagus_Gastroesophageal_Junction 1e.04 0.041 (0.004)
T2D Esophagus_Gastroesophageal_Junction 0.001 0.051 (0.004)
T2D Esophagus_Gastroesophageal_Junction 0.01 0.063 (0.004)
T2D Esophagus_Gastroesophageal_Junction 0.05 0.071 (0.004)
T2D Esophagus_Gastroesophageal_Junction 0.1 0.077 (0.004)
T2D Esophagus_Gastroesophageal_Junction 0.5 0.078 (0.004)
T2D Esophagus_Gastroesophageal_Junction 1 0.078 (0.004)
T2D Esophagus_Gastroesophageal_Junction All 0.085 (0.004)
T2D Esophagus_Mucosa 1e.06 0.022 (0.004)
T2D Esophagus_Mucosa 1e.05 0.032 (0.004)
T2D Esophagus_Mucosa 1e.04 0.042 (0.004)
T2D Esophagus_Mucosa 0.001 0.057 (0.004)
T2D Esophagus_Mucosa 0.01 0.066 (0.004)
T2D Esophagus_Mucosa 0.05 0.073 (0.004)
T2D Esophagus_Mucosa 0.1 0.076 (0.004)
T2D Esophagus_Mucosa 0.5 0.081 (0.004)
T2D Esophagus_Mucosa 1 0.081 (0.004)
T2D Esophagus_Mucosa All 0.085 (0.004)
T2D Esophagus_Muscularis 1e.06 0.043 (0.004)
T2D Esophagus_Muscularis 1e.05 0.047 (0.004)
T2D Esophagus_Muscularis 1e.04 0.056 (0.004)
T2D Esophagus_Muscularis 0.001 0.065 (0.004)
T2D Esophagus_Muscularis 0.01 0.077 (0.004)
T2D Esophagus_Muscularis 0.05 0.083 (0.004)
T2D Esophagus_Muscularis 0.1 0.084 (0.004)
T2D Esophagus_Muscularis 0.5 0.091 (0.004)
T2D Esophagus_Muscularis 1 0.09 (0.004)
T2D Esophagus_Muscularis All 0.097 (0.004)
T2D Heart_Atrial_Appendage 1e.06 0.044 (0.004)
T2D Heart_Atrial_Appendage 1e.05 0.053 (0.004)
T2D Heart_Atrial_Appendage 1e.04 0.059 (0.004)
T2D Heart_Atrial_Appendage 0.001 0.066 (0.004)
T2D Heart_Atrial_Appendage 0.01 0.074 (0.004)
T2D Heart_Atrial_Appendage 0.05 0.079 (0.004)
T2D Heart_Atrial_Appendage 0.1 0.081 (0.004)
T2D Heart_Atrial_Appendage 0.5 0.081 (0.004)
T2D Heart_Atrial_Appendage 1 0.081 (0.004)
T2D Heart_Atrial_Appendage All 0.093 (0.004)
T2D Heart_Left_Ventricle 1e.06 0.035 (0.004)
T2D Heart_Left_Ventricle 1e.05 0.038 (0.004)
T2D Heart_Left_Ventricle 1e.04 0.047 (0.004)
T2D Heart_Left_Ventricle 0.001 0.061 (0.004)
T2D Heart_Left_Ventricle 0.01 0.066 (0.004)
T2D Heart_Left_Ventricle 0.05 0.075 (0.004)
T2D Heart_Left_Ventricle 0.1 0.08 (0.004)
T2D Heart_Left_Ventricle 0.5 0.079 (0.004)
T2D Heart_Left_Ventricle 1 0.079 (0.004)
T2D Heart_Left_Ventricle All 0.087 (0.004)
T2D Liver 1e.06 0.033 (0.004)
T2D Liver 1e.05 0.042 (0.004)
T2D Liver 1e.04 0.039 (0.004)
T2D Liver 0.001 0.049 (0.004)
T2D Liver 0.01 0.052 (0.004)
T2D Liver 0.05 0.063 (0.004)
T2D Liver 0.1 0.067 (0.004)
T2D Liver 0.5 0.07 (0.004)
T2D Liver 1 0.069 (0.004)
T2D Liver All 0.077 (0.004)
T2D Lung 1e.06 0.042 (0.004)
T2D Lung 1e.05 0.052 (0.004)
T2D Lung 1e.04 0.058 (0.004)
T2D Lung 0.001 0.063 (0.004)
T2D Lung 0.01 0.078 (0.004)
T2D Lung 0.05 0.082 (0.004)
T2D Lung 0.1 0.084 (0.004)
T2D Lung 0.5 0.086 (0.004)
T2D Lung 1 0.085 (0.004)
T2D Lung All 0.093 (0.004)
T2D METSIM.ADIPOSE.RNASEQ 1e.06 0.029 (0.004)
T2D METSIM.ADIPOSE.RNASEQ 1e.05 0.036 (0.004)
T2D METSIM.ADIPOSE.RNASEQ 1e.04 0.039 (0.004)
T2D METSIM.ADIPOSE.RNASEQ 0.001 0.053 (0.004)
T2D METSIM.ADIPOSE.RNASEQ 0.01 0.06 (0.004)
T2D METSIM.ADIPOSE.RNASEQ 0.05 0.072 (0.004)
T2D METSIM.ADIPOSE.RNASEQ 0.1 0.078 (0.004)
T2D METSIM.ADIPOSE.RNASEQ 0.5 0.085 (0.004)
T2D METSIM.ADIPOSE.RNASEQ 1 0.085 (0.004)
T2D METSIM.ADIPOSE.RNASEQ All 0.087 (0.004)
T2D Minor_Salivary_Gland 1e.06 0.012 (0.004)
T2D Minor_Salivary_Gland 1e.05 0.012 (0.004)
T2D Minor_Salivary_Gland 1e.04 0.02 (0.004)
T2D Minor_Salivary_Gland 0.001 0.024 (0.004)
T2D Minor_Salivary_Gland 0.01 0.036 (0.004)
T2D Minor_Salivary_Gland 0.05 0.048 (0.004)
T2D Minor_Salivary_Gland 0.1 0.054 (0.004)
T2D Minor_Salivary_Gland 0.5 0.054 (0.004)
T2D Minor_Salivary_Gland 1 0.053 (0.004)
T2D Minor_Salivary_Gland All 0.055 (0.004)
T2D Muscle_Skeletal 1e.06 0.045 (0.004)
T2D Muscle_Skeletal 1e.05 0.053 (0.004)
T2D Muscle_Skeletal 1e.04 0.065 (0.004)
T2D Muscle_Skeletal 0.001 0.072 (0.004)
T2D Muscle_Skeletal 0.01 0.083 (0.004)
T2D Muscle_Skeletal 0.05 0.092 (0.004)
T2D Muscle_Skeletal 0.1 0.094 (0.004)
T2D Muscle_Skeletal 0.5 0.097 (0.004)
T2D Muscle_Skeletal 1 0.096 (0.004)
T2D Muscle_Skeletal All 0.104 (0.004)
T2D Nerve_Tibial 1e.06 0.045 (0.004)
T2D Nerve_Tibial 1e.05 0.052 (0.004)
T2D Nerve_Tibial 1e.04 0.055 (0.004)
T2D Nerve_Tibial 0.001 0.08 (0.004)
T2D Nerve_Tibial 0.01 0.09 (0.004)
T2D Nerve_Tibial 0.05 0.098 (0.004)
T2D Nerve_Tibial 0.1 0.101 (0.004)
T2D Nerve_Tibial 0.5 0.098 (0.004)
T2D Nerve_Tibial 1 0.096 (0.004)
T2D Nerve_Tibial All 0.109 (0.004)
T2D NTR.BLOOD.RNAARR 1e.06 0.055 (0.004)
T2D NTR.BLOOD.RNAARR 1e.05 0.06 (0.004)
T2D NTR.BLOOD.RNAARR 1e.04 0.06 (0.004)
T2D NTR.BLOOD.RNAARR 0.001 0.062 (0.004)
T2D NTR.BLOOD.RNAARR 0.01 0.061 (0.004)
T2D NTR.BLOOD.RNAARR 0.05 0.065 (0.004)
T2D NTR.BLOOD.RNAARR 0.1 0.064 (0.004)
T2D NTR.BLOOD.RNAARR 0.5 0.069 (0.004)
T2D NTR.BLOOD.RNAARR 1 0.068 (0.004)
T2D NTR.BLOOD.RNAARR All 0.082 (0.004)
T2D Ovary 1e.06 0.015 (0.004)
T2D Ovary 1e.05 0.02 (0.004)
T2D Ovary 1e.04 0.03 (0.004)
T2D Ovary 0.001 0.038 (0.004)
T2D Ovary 0.01 0.053 (0.004)
T2D Ovary 0.05 0.063 (0.004)
T2D Ovary 0.1 0.067 (0.004)
T2D Ovary 0.5 0.064 (0.004)
T2D Ovary 1 0.063 (0.004)
T2D Ovary All 0.069 (0.004)
T2D Pancreas 1e.06 0.036 (0.004)
T2D Pancreas 1e.05 0.041 (0.004)
T2D Pancreas 1e.04 0.048 (0.004)
T2D Pancreas 0.001 0.057 (0.004)
T2D Pancreas 0.01 0.061 (0.004)
T2D Pancreas 0.05 0.069 (0.004)
T2D Pancreas 0.1 0.074 (0.004)
T2D Pancreas 0.5 0.081 (0.004)
T2D Pancreas 1 0.081 (0.004)
T2D Pancreas All 0.086 (0.004)
T2D Pituitary 1e.06 0.019 (0.004)
T2D Pituitary 1e.05 0.03 (0.004)
T2D Pituitary 1e.04 0.037 (0.004)
T2D Pituitary 0.001 0.053 (0.004)
T2D Pituitary 0.01 0.06 (0.004)
T2D Pituitary 0.05 0.064 (0.004)
T2D Pituitary 0.1 0.066 (0.004)
T2D Pituitary 0.5 0.071 (0.004)
T2D Pituitary 1 0.071 (0.004)
T2D Pituitary All 0.076 (0.004)
T2D Prostate 1e.06 0.014 (0.004)
T2D Prostate 1e.05 0.02 (0.004)
T2D Prostate 1e.04 0.022 (0.004)
T2D Prostate 0.001 0.031 (0.004)
T2D Prostate 0.01 0.043 (0.004)
T2D Prostate 0.05 0.055 (0.004)
T2D Prostate 0.1 0.055 (0.004)
T2D Prostate 0.5 0.057 (0.004)
T2D Prostate 1 0.057 (0.004)
T2D Prostate All 0.059 (0.004)
T2D Skin_Not_Sun_Exposed_Suprapubic 1e.06 0.042 (0.004)
T2D Skin_Not_Sun_Exposed_Suprapubic 1e.05 0.049 (0.004)
T2D Skin_Not_Sun_Exposed_Suprapubic 1e.04 0.059 (0.004)
T2D Skin_Not_Sun_Exposed_Suprapubic 0.001 0.058 (0.004)
T2D Skin_Not_Sun_Exposed_Suprapubic 0.01 0.073 (0.004)
T2D Skin_Not_Sun_Exposed_Suprapubic 0.05 0.079 (0.004)
T2D Skin_Not_Sun_Exposed_Suprapubic 0.1 0.084 (0.004)
T2D Skin_Not_Sun_Exposed_Suprapubic 0.5 0.087 (0.004)
T2D Skin_Not_Sun_Exposed_Suprapubic 1 0.087 (0.004)
T2D Skin_Not_Sun_Exposed_Suprapubic All 0.094 (0.004)
T2D Skin_Sun_Exposed_Lower_leg 1e.06 0.036 (0.004)
T2D Skin_Sun_Exposed_Lower_leg 1e.05 0.045 (0.004)
T2D Skin_Sun_Exposed_Lower_leg 1e.04 0.054 (0.004)
T2D Skin_Sun_Exposed_Lower_leg 0.001 0.068 (0.004)
T2D Skin_Sun_Exposed_Lower_leg 0.01 0.076 (0.004)
T2D Skin_Sun_Exposed_Lower_leg 0.05 0.084 (0.004)
T2D Skin_Sun_Exposed_Lower_leg 0.1 0.086 (0.004)
T2D Skin_Sun_Exposed_Lower_leg 0.5 0.091 (0.004)
T2D Skin_Sun_Exposed_Lower_leg 1 0.089 (0.004)
T2D Skin_Sun_Exposed_Lower_leg All 0.098 (0.004)
T2D Small_Intestine_Terminal_Ileum 1e.06 0.04 (0.004)
T2D Small_Intestine_Terminal_Ileum 1e.05 0.044 (0.004)
T2D Small_Intestine_Terminal_Ileum 1e.04 0.042 (0.004)
T2D Small_Intestine_Terminal_Ileum 0.001 0.052 (0.004)
T2D Small_Intestine_Terminal_Ileum 0.01 0.062 (0.004)
T2D Small_Intestine_Terminal_Ileum 0.05 0.067 (0.004)
T2D Small_Intestine_Terminal_Ileum 0.1 0.072 (0.004)
T2D Small_Intestine_Terminal_Ileum 0.5 0.069 (0.004)
T2D Small_Intestine_Terminal_Ileum 1 0.068 (0.004)
T2D Small_Intestine_Terminal_Ileum All 0.076 (0.004)
T2D Spleen 1e.06 0.036 (0.004)
T2D Spleen 1e.05 0.035 (0.004)
T2D Spleen 1e.04 0.04 (0.004)
T2D Spleen 0.001 0.06 (0.004)
T2D Spleen 0.01 0.064 (0.004)
T2D Spleen 0.05 0.072 (0.004)
T2D Spleen 0.1 0.078 (0.004)
T2D Spleen 0.5 0.078 (0.004)
T2D Spleen 1 0.078 (0.004)
T2D Spleen All 0.083 (0.004)
T2D Stomach 1e.06 0.022 (0.004)
T2D Stomach 1e.05 0.023 (0.004)
T2D Stomach 1e.04 0.027 (0.004)
T2D Stomach 0.001 0.046 (0.004)
T2D Stomach 0.01 0.062 (0.004)
T2D Stomach 0.05 0.071 (0.004)
T2D Stomach 0.1 0.074 (0.004)
T2D Stomach 0.5 0.079 (0.004)
T2D Stomach 1 0.079 (0.004)
T2D Stomach All 0.081 (0.004)
T2D Testis 1e.06 0.044 (0.004)
T2D Testis 1e.05 0.048 (0.004)
T2D Testis 1e.04 0.055 (0.004)
T2D Testis 0.001 0.066 (0.004)
T2D Testis 0.01 0.08 (0.004)
T2D Testis 0.05 0.088 (0.004)
T2D Testis 0.1 0.088 (0.004)
T2D Testis 0.5 0.09 (0.004)
T2D Testis 1 0.092 (0.004)
T2D Testis All 0.098 (0.004)
T2D Thyroid 1e.06 0.056 (0.004)
T2D Thyroid 1e.05 0.058 (0.004)
T2D Thyroid 1e.04 0.063 (0.004)
T2D Thyroid 0.001 0.066 (0.004)
T2D Thyroid 0.01 0.082 (0.004)
T2D Thyroid 0.05 0.09 (0.004)
T2D Thyroid 0.1 0.093 (0.004)
T2D Thyroid 0.5 0.099 (0.004)
T2D Thyroid 1 0.098 (0.004)
T2D Thyroid All 0.106 (0.004)
T2D Uterus 1e.06 0.012 (0.004)
T2D Uterus 1e.05 0.02 (0.004)
T2D Uterus 1e.04 0.02 (0.004)
T2D Uterus 0.001 0.025 (0.004)
T2D Uterus 0.01 0.043 (0.004)
T2D Uterus 0.05 0.052 (0.004)
T2D Uterus 0.1 0.056 (0.004)
T2D Uterus 0.5 0.054 (0.004)
T2D Uterus 1 0.055 (0.004)
T2D Uterus All 0.057 (0.004)
T2D Vagina 1e.05 0.005 (0.004)
T2D Vagina 1e.04 0.023 (0.004)
T2D Vagina 0.001 0.034 (0.004)
T2D Vagina 0.01 0.047 (0.004)
T2D Vagina 0.05 0.05 (0.004)
T2D Vagina 0.1 0.053 (0.004)
T2D Vagina 0.5 0.052 (0.004)
T2D Vagina 1 0.053 (0.004)
T2D Vagina All 0.056 (0.004)
T2D Whole_Blood 1e.06 0.035 (0.004)
T2D Whole_Blood 1e.05 0.038 (0.004)
T2D Whole_Blood 1e.04 0.042 (0.004)
T2D Whole_Blood 0.001 0.05 (0.004)
T2D Whole_Blood 0.01 0.06 (0.004)
T2D Whole_Blood 0.05 0.074 (0.004)
T2D Whole_Blood 0.1 0.078 (0.004)
T2D Whole_Blood 0.5 0.083 (0.004)
T2D Whole_Blood 1 0.082 (0.004)
T2D Whole_Blood All 0.087 (0.004)
T2D YFS.BLOOD.RNAARR 1e.06 0.034 (0.004)
T2D YFS.BLOOD.RNAARR 1e.05 0.036 (0.004)
T2D YFS.BLOOD.RNAARR 1e.04 0.044 (0.004)
T2D YFS.BLOOD.RNAARR 0.001 0.053 (0.004)
T2D YFS.BLOOD.RNAARR 0.01 0.065 (0.004)
T2D YFS.BLOOD.RNAARR 0.05 0.075 (0.004)
T2D YFS.BLOOD.RNAARR 0.1 0.078 (0.004)
T2D YFS.BLOOD.RNAARR 0.5 0.084 (0.004)
T2D YFS.BLOOD.RNAARR 1 0.084 (0.004)
T2D YFS.BLOOD.RNAARR All 0.086 (0.004)
CAD Adipose_Subcutaneous 1e.06 0.034 (0.004)
CAD Adipose_Subcutaneous 1e.05 0.036 (0.004)
CAD Adipose_Subcutaneous 1e.04 0.048 (0.004)
CAD Adipose_Subcutaneous 0.001 0.05 (0.004)
CAD Adipose_Subcutaneous 0.01 0.055 (0.004)
CAD Adipose_Subcutaneous 0.05 0.064 (0.004)
CAD Adipose_Subcutaneous 0.1 0.068 (0.004)
CAD Adipose_Subcutaneous 0.5 0.071 (0.004)
CAD Adipose_Subcutaneous 1 0.072 (0.004)
CAD Adipose_Subcutaneous All 0.076 (0.004)
CAD Adipose_Visceral_Omentum 1e.06 0.04 (0.004)
CAD Adipose_Visceral_Omentum 1e.05 0.042 (0.004)
CAD Adipose_Visceral_Omentum 1e.04 0.043 (0.004)
CAD Adipose_Visceral_Omentum 0.001 0.038 (0.004)
CAD Adipose_Visceral_Omentum 0.01 0.05 (0.004)
CAD Adipose_Visceral_Omentum 0.05 0.056 (0.004)
CAD Adipose_Visceral_Omentum 0.1 0.061 (0.004)
CAD Adipose_Visceral_Omentum 0.5 0.064 (0.004)
CAD Adipose_Visceral_Omentum 1 0.064 (0.004)
CAD Adipose_Visceral_Omentum All 0.07 (0.004)
CAD Adrenal_Gland 1e.06 0.02 (0.004)
CAD Adrenal_Gland 1e.05 0.027 (0.004)
CAD Adrenal_Gland 1e.04 0.032 (0.004)
CAD Adrenal_Gland 0.001 0.032 (0.004)
CAD Adrenal_Gland 0.01 0.044 (0.004)
CAD Adrenal_Gland 0.05 0.051 (0.004)
CAD Adrenal_Gland 0.1 0.055 (0.004)
CAD Adrenal_Gland 0.5 0.058 (0.004)
CAD Adrenal_Gland 1 0.058 (0.004)
CAD Adrenal_Gland All 0.058 (0.004)
CAD Artery_Aorta 1e.06 0.051 (0.004)
CAD Artery_Aorta 1e.05 0.053 (0.004)
CAD Artery_Aorta 1e.04 0.064 (0.004)
CAD Artery_Aorta 0.001 0.062 (0.004)
CAD Artery_Aorta 0.01 0.064 (0.004)
CAD Artery_Aorta 0.05 0.077 (0.004)
CAD Artery_Aorta 0.1 0.074 (0.004)
CAD Artery_Aorta 0.5 0.078 (0.004)
CAD Artery_Aorta 1 0.078 (0.004)
CAD Artery_Aorta All 0.089 (0.004)
CAD Artery_Coronary 1e.06 0.033 (0.004)
CAD Artery_Coronary 1e.05 0.035 (0.004)
CAD Artery_Coronary 1e.04 0.04 (0.004)
CAD Artery_Coronary 0.001 0.042 (0.004)
CAD Artery_Coronary 0.01 0.049 (0.004)
CAD Artery_Coronary 0.05 0.057 (0.004)
CAD Artery_Coronary 0.1 0.057 (0.004)
CAD Artery_Coronary 0.5 0.059 (0.004)
CAD Artery_Coronary 1 0.059 (0.004)
CAD Artery_Coronary All 0.064 (0.004)
CAD Artery_Tibial 1e.06 0.041 (0.004)
CAD Artery_Tibial 1e.05 0.048 (0.004)
CAD Artery_Tibial 1e.04 0.055 (0.004)
CAD Artery_Tibial 0.001 0.06 (0.004)
CAD Artery_Tibial 0.01 0.069 (0.004)
CAD Artery_Tibial 0.05 0.081 (0.004)
CAD Artery_Tibial 0.1 0.081 (0.004)
CAD Artery_Tibial 0.5 0.086 (0.004)
CAD Artery_Tibial 1 0.084 (0.004)
CAD Artery_Tibial All 0.089 (0.004)
CAD Brain_Amygdala 1e.06 0.011 (0.004)
CAD Brain_Amygdala 1e.05 0.011 (0.004)
CAD Brain_Amygdala 1e.04 0.014 (0.004)
CAD Brain_Amygdala 0.001 0.013 (0.004)
CAD Brain_Amygdala 0.01 0.014 (0.004)
CAD Brain_Amygdala 0.05 0.029 (0.004)
CAD Brain_Amygdala 0.1 0.029 (0.004)
CAD Brain_Amygdala 0.5 0.036 (0.004)
CAD Brain_Amygdala 1 0.036 (0.004)
CAD Brain_Amygdala All 0.034 (0.004)
CAD Brain_Anterior_cingulate_cortex_BA24 1e.06 0.012 (0.004)
CAD Brain_Anterior_cingulate_cortex_BA24 1e.05 0.015 (0.004)
CAD Brain_Anterior_cingulate_cortex_BA24 1e.04 0.022 (0.004)
CAD Brain_Anterior_cingulate_cortex_BA24 0.001 0.021 (0.004)
CAD Brain_Anterior_cingulate_cortex_BA24 0.01 0.022 (0.004)
CAD Brain_Anterior_cingulate_cortex_BA24 0.05 0.036 (0.004)
CAD Brain_Anterior_cingulate_cortex_BA24 0.1 0.038 (0.004)
CAD Brain_Anterior_cingulate_cortex_BA24 0.5 0.039 (0.004)
CAD Brain_Anterior_cingulate_cortex_BA24 1 0.04 (0.004)
CAD Brain_Anterior_cingulate_cortex_BA24 All 0.042 (0.004)
CAD Brain_Caudate_basal_ganglia 1e.06 0.02 (0.004)
CAD Brain_Caudate_basal_ganglia 1e.05 0.031 (0.004)
CAD Brain_Caudate_basal_ganglia 1e.04 0.034 (0.004)
CAD Brain_Caudate_basal_ganglia 0.001 0.037 (0.004)
CAD Brain_Caudate_basal_ganglia 0.01 0.038 (0.004)
CAD Brain_Caudate_basal_ganglia 0.05 0.049 (0.004)
CAD Brain_Caudate_basal_ganglia 0.1 0.051 (0.004)
CAD Brain_Caudate_basal_ganglia 0.5 0.053 (0.004)
CAD Brain_Caudate_basal_ganglia 1 0.054 (0.004)
CAD Brain_Caudate_basal_ganglia All 0.058 (0.004)
CAD Brain_Cerebellar_Hemisphere 1e.06 0.024 (0.004)
CAD Brain_Cerebellar_Hemisphere 1e.05 0.03 (0.004)
CAD Brain_Cerebellar_Hemisphere 1e.04 0.025 (0.004)
CAD Brain_Cerebellar_Hemisphere 0.001 0.026 (0.004)
CAD Brain_Cerebellar_Hemisphere 0.01 0.03 (0.004)
CAD Brain_Cerebellar_Hemisphere 0.05 0.044 (0.004)
CAD Brain_Cerebellar_Hemisphere 0.1 0.048 (0.004)
CAD Brain_Cerebellar_Hemisphere 0.5 0.054 (0.004)
CAD Brain_Cerebellar_Hemisphere 1 0.055 (0.004)
CAD Brain_Cerebellar_Hemisphere All 0.057 (0.004)
CAD Brain_Cerebellum 1e.06 0.023 (0.004)
CAD Brain_Cerebellum 1e.05 0.022 (0.004)
CAD Brain_Cerebellum 1e.04 0.025 (0.004)
CAD Brain_Cerebellum 0.001 0.025 (0.004)
CAD Brain_Cerebellum 0.01 0.029 (0.004)
CAD Brain_Cerebellum 0.05 0.044 (0.004)
CAD Brain_Cerebellum 0.1 0.047 (0.004)
CAD Brain_Cerebellum 0.5 0.049 (0.004)
CAD Brain_Cerebellum 1 0.05 (0.004)
CAD Brain_Cerebellum All 0.052 (0.004)
CAD Brain_Cortex 1e.06 0.027 (0.004)
CAD Brain_Cortex 1e.05 0.035 (0.004)
CAD Brain_Cortex 1e.04 0.035 (0.004)
CAD Brain_Cortex 0.001 0.038 (0.004)
CAD Brain_Cortex 0.01 0.048 (0.004)
CAD Brain_Cortex 0.05 0.053 (0.004)
CAD Brain_Cortex 0.1 0.056 (0.004)
CAD Brain_Cortex 0.5 0.057 (0.004)
CAD Brain_Cortex 1 0.057 (0.004)
CAD Brain_Cortex All 0.061 (0.004)
CAD Brain_Frontal_Cortex_BA9 1e.06 0.022 (0.004)
CAD Brain_Frontal_Cortex_BA9 1e.05 0.031 (0.004)
CAD Brain_Frontal_Cortex_BA9 1e.04 0.031 (0.004)
CAD Brain_Frontal_Cortex_BA9 0.001 0.023 (0.004)
CAD Brain_Frontal_Cortex_BA9 0.01 0.028 (0.004)
CAD Brain_Frontal_Cortex_BA9 0.05 0.038 (0.004)
CAD Brain_Frontal_Cortex_BA9 0.1 0.038 (0.004)
CAD Brain_Frontal_Cortex_BA9 0.5 0.039 (0.004)
CAD Brain_Frontal_Cortex_BA9 1 0.04 (0.004)
CAD Brain_Frontal_Cortex_BA9 All 0.047 (0.004)
CAD Brain_Hippocampus 1e.06 0.017 (0.004)
CAD Brain_Hippocampus 1e.05 0.023 (0.004)
CAD Brain_Hippocampus 1e.04 0.026 (0.004)
CAD Brain_Hippocampus 0.001 0.027 (0.004)
CAD Brain_Hippocampus 0.01 0.026 (0.004)
CAD Brain_Hippocampus 0.05 0.036 (0.004)
CAD Brain_Hippocampus 0.1 0.038 (0.004)
CAD Brain_Hippocampus 0.5 0.039 (0.004)
CAD Brain_Hippocampus 1 0.039 (0.004)
CAD Brain_Hippocampus All 0.042 (0.004)
CAD Brain_Hypothalamus 1e.06 0.015 (0.004)
CAD Brain_Hypothalamus 1e.05 0.016 (0.004)
CAD Brain_Hypothalamus 1e.04 0.024 (0.004)
CAD Brain_Hypothalamus 0.001 0.029 (0.004)
CAD Brain_Hypothalamus 0.01 0.03 (0.004)
CAD Brain_Hypothalamus 0.05 0.035 (0.004)
CAD Brain_Hypothalamus 0.1 0.034 (0.004)
CAD Brain_Hypothalamus 0.5 0.037 (0.004)
CAD Brain_Hypothalamus 1 0.037 (0.004)
CAD Brain_Hypothalamus All 0.038 (0.004)
CAD Brain_Nucleus_accumbens_basal_ganglia 1e.06 0.023 (0.004)
CAD Brain_Nucleus_accumbens_basal_ganglia 1e.05 0.026 (0.004)
CAD Brain_Nucleus_accumbens_basal_ganglia 1e.04 0.023 (0.004)
CAD Brain_Nucleus_accumbens_basal_ganglia 0.001 0.03 (0.004)
CAD Brain_Nucleus_accumbens_basal_ganglia 0.01 0.036 (0.004)
CAD Brain_Nucleus_accumbens_basal_ganglia 0.05 0.043 (0.004)
CAD Brain_Nucleus_accumbens_basal_ganglia 0.1 0.043 (0.004)
CAD Brain_Nucleus_accumbens_basal_ganglia 0.5 0.046 (0.004)
CAD Brain_Nucleus_accumbens_basal_ganglia 1 0.047 (0.004)
CAD Brain_Nucleus_accumbens_basal_ganglia All 0.048 (0.004)
CAD Brain_Putamen_basal_ganglia 1e.06 0.013 (0.004)
CAD Brain_Putamen_basal_ganglia 1e.05 0.017 (0.004)
CAD Brain_Putamen_basal_ganglia 1e.04 0.019 (0.004)
CAD Brain_Putamen_basal_ganglia 0.001 0.029 (0.004)
CAD Brain_Putamen_basal_ganglia 0.01 0.034 (0.004)
CAD Brain_Putamen_basal_ganglia 0.05 0.041 (0.004)
CAD Brain_Putamen_basal_ganglia 0.1 0.041 (0.004)
CAD Brain_Putamen_basal_ganglia 0.5 0.043 (0.004)
CAD Brain_Putamen_basal_ganglia 1 0.043 (0.004)
CAD Brain_Putamen_basal_ganglia All 0.043 (0.004)
CAD Brain_Spinal_cord_cervical_c-1 1e.06 0.039 (0.004)
CAD Brain_Spinal_cord_cervical_c-1 1e.05 0.041 (0.004)
CAD Brain_Spinal_cord_cervical_c-1 1e.04 0.041 (0.004)
CAD Brain_Spinal_cord_cervical_c-1 0.001 0.029 (0.004)
CAD Brain_Spinal_cord_cervical_c-1 0.01 0.029 (0.004)
CAD Brain_Spinal_cord_cervical_c-1 0.05 0.039 (0.004)
CAD Brain_Spinal_cord_cervical_c-1 0.1 0.041 (0.004)
CAD Brain_Spinal_cord_cervical_c-1 0.5 0.04 (0.004)
CAD Brain_Spinal_cord_cervical_c-1 1 0.042 (0.004)
CAD Brain_Spinal_cord_cervical_c-1 All 0.053 (0.004)
CAD Brain_Substantia_nigra 1e.06 0.015 (0.004)
CAD Brain_Substantia_nigra 1e.05 0.015 (0.004)
CAD Brain_Substantia_nigra 1e.04 0.015 (0.004)
CAD Brain_Substantia_nigra 0.001 0.02 (0.004)
CAD Brain_Substantia_nigra 0.01 0.022 (0.004)
CAD Brain_Substantia_nigra 0.05 0.028 (0.004)
CAD Brain_Substantia_nigra 0.1 0.034 (0.004)
CAD Brain_Substantia_nigra 0.5 0.041 (0.004)
CAD Brain_Substantia_nigra 1 0.041 (0.004)
CAD Brain_Substantia_nigra All 0.041 (0.004)
CAD Breast_Mammary_Tissue 1e.06 0.023 (0.004)
CAD Breast_Mammary_Tissue 1e.05 0.031 (0.004)
CAD Breast_Mammary_Tissue 1e.04 0.035 (0.004)
CAD Breast_Mammary_Tissue 0.001 0.037 (0.004)
CAD Breast_Mammary_Tissue 0.01 0.041 (0.004)
CAD Breast_Mammary_Tissue 0.05 0.051 (0.004)
CAD Breast_Mammary_Tissue 0.1 0.055 (0.004)
CAD Breast_Mammary_Tissue 0.5 0.058 (0.004)
CAD Breast_Mammary_Tissue 1 0.057 (0.004)
CAD Breast_Mammary_Tissue All 0.063 (0.004)
CAD Cells_EBV-transformed_lymphocytes 1e.06 0.018 (0.004)
CAD Cells_EBV-transformed_lymphocytes 1e.05 0.027 (0.004)
CAD Cells_EBV-transformed_lymphocytes 1e.04 0.03 (0.004)
CAD Cells_EBV-transformed_lymphocytes 0.001 0.026 (0.004)
CAD Cells_EBV-transformed_lymphocytes 0.01 0.034 (0.004)
CAD Cells_EBV-transformed_lymphocytes 0.05 0.039 (0.004)
CAD Cells_EBV-transformed_lymphocytes 0.1 0.04 (0.004)
CAD Cells_EBV-transformed_lymphocytes 0.5 0.048 (0.004)
CAD Cells_EBV-transformed_lymphocytes 1 0.049 (0.004)
CAD Cells_EBV-transformed_lymphocytes All 0.051 (0.004)
CAD Cells_Transformed_fibroblasts 1e.06 0.037 (0.004)
CAD Cells_Transformed_fibroblasts 1e.05 0.042 (0.004)
CAD Cells_Transformed_fibroblasts 1e.04 0.05 (0.004)
CAD Cells_Transformed_fibroblasts 0.001 0.051 (0.004)
CAD Cells_Transformed_fibroblasts 0.01 0.063 (0.004)
CAD Cells_Transformed_fibroblasts 0.05 0.07 (0.004)
CAD Cells_Transformed_fibroblasts 0.1 0.075 (0.004)
CAD Cells_Transformed_fibroblasts 0.5 0.082 (0.004)
CAD Cells_Transformed_fibroblasts 1 0.082 (0.004)
CAD Cells_Transformed_fibroblasts All 0.084 (0.004)
CAD CMC.BRAIN.RNASEQ 1e.06 0.047 (0.004)
CAD CMC.BRAIN.RNASEQ 1e.05 0.05 (0.004)
CAD CMC.BRAIN.RNASEQ 1e.04 0.052 (0.004)
CAD CMC.BRAIN.RNASEQ 0.001 0.061 (0.004)
CAD CMC.BRAIN.RNASEQ 0.01 0.067 (0.004)
CAD CMC.BRAIN.RNASEQ 0.05 0.072 (0.004)
CAD CMC.BRAIN.RNASEQ 0.1 0.073 (0.004)
CAD CMC.BRAIN.RNASEQ 0.5 0.071 (0.004)
CAD CMC.BRAIN.RNASEQ 1 0.072 (0.004)
CAD CMC.BRAIN.RNASEQ All 0.081 (0.004)
CAD CMC.BRAIN.RNASEQ_SPLICING 1e.06 0.025 (0.004)
CAD CMC.BRAIN.RNASEQ_SPLICING 1e.05 0.02 (0.004)
CAD CMC.BRAIN.RNASEQ_SPLICING 1e.04 0.024 (0.004)
CAD CMC.BRAIN.RNASEQ_SPLICING 0.001 0.033 (0.004)
CAD CMC.BRAIN.RNASEQ_SPLICING 0.01 0.04 (0.004)
CAD CMC.BRAIN.RNASEQ_SPLICING 0.05 0.047 (0.004)
CAD CMC.BRAIN.RNASEQ_SPLICING 0.1 0.047 (0.004)
CAD CMC.BRAIN.RNASEQ_SPLICING 0.5 0.053 (0.004)
CAD CMC.BRAIN.RNASEQ_SPLICING 1 0.054 (0.004)
CAD CMC.BRAIN.RNASEQ_SPLICING All 0.054 (0.004)
CAD Colon_Sigmoid 1e.06 0.025 (0.004)
CAD Colon_Sigmoid 1e.05 0.032 (0.004)
CAD Colon_Sigmoid 1e.04 0.032 (0.004)
CAD Colon_Sigmoid 0.001 0.037 (0.004)
CAD Colon_Sigmoid 0.01 0.048 (0.004)
CAD Colon_Sigmoid 0.05 0.054 (0.004)
CAD Colon_Sigmoid 0.1 0.054 (0.004)
CAD Colon_Sigmoid 0.5 0.06 (0.004)
CAD Colon_Sigmoid 1 0.059 (0.004)
CAD Colon_Sigmoid All 0.061 (0.004)
CAD Colon_Transverse 1e.06 0.029 (0.004)
CAD Colon_Transverse 1e.05 0.035 (0.004)
CAD Colon_Transverse 1e.04 0.04 (0.004)
CAD Colon_Transverse 0.001 0.034 (0.004)
CAD Colon_Transverse 0.01 0.048 (0.004)
CAD Colon_Transverse 0.05 0.053 (0.004)
CAD Colon_Transverse 0.1 0.057 (0.004)
CAD Colon_Transverse 0.5 0.06 (0.004)
CAD Colon_Transverse 1 0.062 (0.004)
CAD Colon_Transverse All 0.064 (0.004)
CAD Esophagus_Gastroesophageal_Junction 1e.06 0.027 (0.004)
CAD Esophagus_Gastroesophageal_Junction 1e.05 0.029 (0.004)
CAD Esophagus_Gastroesophageal_Junction 1e.04 0.03 (0.004)
CAD Esophagus_Gastroesophageal_Junction 0.001 0.029 (0.004)
CAD Esophagus_Gastroesophageal_Junction 0.01 0.033 (0.004)
CAD Esophagus_Gastroesophageal_Junction 0.05 0.047 (0.004)
CAD Esophagus_Gastroesophageal_Junction 0.1 0.046 (0.004)
CAD Esophagus_Gastroesophageal_Junction 0.5 0.054 (0.004)
CAD Esophagus_Gastroesophageal_Junction 1 0.055 (0.004)
CAD Esophagus_Gastroesophageal_Junction All 0.058 (0.004)
CAD Esophagus_Mucosa 1e.06 0.039 (0.004)
CAD Esophagus_Mucosa 1e.05 0.043 (0.004)
CAD Esophagus_Mucosa 1e.04 0.047 (0.004)
CAD Esophagus_Mucosa 0.001 0.052 (0.004)
CAD Esophagus_Mucosa 0.01 0.051 (0.004)
CAD Esophagus_Mucosa 0.05 0.061 (0.004)
CAD Esophagus_Mucosa 0.1 0.06 (0.004)
CAD Esophagus_Mucosa 0.5 0.067 (0.004)
CAD Esophagus_Mucosa 1 0.069 (0.004)
CAD Esophagus_Mucosa All 0.072 (0.004)
CAD Esophagus_Muscularis 1e.06 0.033 (0.004)
CAD Esophagus_Muscularis 1e.05 0.035 (0.004)
CAD Esophagus_Muscularis 1e.04 0.042 (0.004)
CAD Esophagus_Muscularis 0.001 0.041 (0.004)
CAD Esophagus_Muscularis 0.01 0.049 (0.004)
CAD Esophagus_Muscularis 0.05 0.057 (0.004)
CAD Esophagus_Muscularis 0.1 0.059 (0.004)
CAD Esophagus_Muscularis 0.5 0.066 (0.004)
CAD Esophagus_Muscularis 1 0.067 (0.004)
CAD Esophagus_Muscularis All 0.069 (0.004)
CAD Heart_Atrial_Appendage 1e.06 0.021 (0.004)
CAD Heart_Atrial_Appendage 1e.05 0.022 (0.004)
CAD Heart_Atrial_Appendage 1e.04 0.032 (0.004)
CAD Heart_Atrial_Appendage 0.001 0.037 (0.004)
CAD Heart_Atrial_Appendage 0.01 0.047 (0.004)
CAD Heart_Atrial_Appendage 0.05 0.054 (0.004)
CAD Heart_Atrial_Appendage 0.1 0.059 (0.004)
CAD Heart_Atrial_Appendage 0.5 0.062 (0.004)
CAD Heart_Atrial_Appendage 1 0.063 (0.004)
CAD Heart_Atrial_Appendage All 0.065 (0.004)
CAD Heart_Left_Ventricle 1e.06 0.03 (0.004)
CAD Heart_Left_Ventricle 1e.05 0.038 (0.004)
CAD Heart_Left_Ventricle 1e.04 0.04 (0.004)
CAD Heart_Left_Ventricle 0.001 0.041 (0.004)
CAD Heart_Left_Ventricle 0.01 0.048 (0.004)
CAD Heart_Left_Ventricle 0.05 0.056 (0.004)
CAD Heart_Left_Ventricle 0.1 0.055 (0.004)
CAD Heart_Left_Ventricle 0.5 0.059 (0.004)
CAD Heart_Left_Ventricle 1 0.06 (0.004)
CAD Heart_Left_Ventricle All 0.066 (0.004)
CAD Liver 1e.06 0.028 (0.004)
CAD Liver 1e.05 0.03 (0.004)
CAD Liver 1e.04 0.03 (0.004)
CAD Liver 0.001 0.034 (0.004)
CAD Liver 0.01 0.033 (0.004)
CAD Liver 0.05 0.044 (0.004)
CAD Liver 0.1 0.044 (0.004)
CAD Liver 0.5 0.048 (0.004)
CAD Liver 1 0.048 (0.004)
CAD Liver All 0.051 (0.004)
CAD Lung 1e.06 0.031 (0.004)
CAD Lung 1e.05 0.029 (0.004)
CAD Lung 1e.04 0.046 (0.004)
CAD Lung 0.001 0.045 (0.004)
CAD Lung 0.01 0.055 (0.004)
CAD Lung 0.05 0.063 (0.004)
CAD Lung 0.1 0.068 (0.004)
CAD Lung 0.5 0.071 (0.004)
CAD Lung 1 0.072 (0.004)
CAD Lung All 0.076 (0.004)
CAD METSIM.ADIPOSE.RNASEQ 1e.06 0.023 (0.004)
CAD METSIM.ADIPOSE.RNASEQ 1e.05 0.032 (0.004)
CAD METSIM.ADIPOSE.RNASEQ 1e.04 0.042 (0.004)
CAD METSIM.ADIPOSE.RNASEQ 0.001 0.049 (0.004)
CAD METSIM.ADIPOSE.RNASEQ 0.01 0.056 (0.004)
CAD METSIM.ADIPOSE.RNASEQ 0.05 0.064 (0.004)
CAD METSIM.ADIPOSE.RNASEQ 0.1 0.069 (0.004)
CAD METSIM.ADIPOSE.RNASEQ 0.5 0.063 (0.004)
CAD METSIM.ADIPOSE.RNASEQ 1 0.063 (0.004)
CAD METSIM.ADIPOSE.RNASEQ All 0.07 (0.004)
CAD Minor_Salivary_Gland 1e.06 0.005 (0.004)
CAD Minor_Salivary_Gland 1e.05 0.013 (0.004)
CAD Minor_Salivary_Gland 1e.04 0.021 (0.004)
CAD Minor_Salivary_Gland 0.001 0.017 (0.004)
CAD Minor_Salivary_Gland 0.01 0.03 (0.004)
CAD Minor_Salivary_Gland 0.05 0.038 (0.004)
CAD Minor_Salivary_Gland 0.1 0.04 (0.004)
CAD Minor_Salivary_Gland 0.5 0.042 (0.004)
CAD Minor_Salivary_Gland 1 0.041 (0.004)
CAD Minor_Salivary_Gland All 0.043 (0.004)
CAD Muscle_Skeletal 1e.06 0.054 (0.004)
CAD Muscle_Skeletal 1e.05 0.054 (0.004)
CAD Muscle_Skeletal 1e.04 0.053 (0.004)
CAD Muscle_Skeletal 0.001 0.058 (0.004)
CAD Muscle_Skeletal 0.01 0.06 (0.004)
CAD Muscle_Skeletal 0.05 0.067 (0.004)
CAD Muscle_Skeletal 0.1 0.072 (0.004)
CAD Muscle_Skeletal 0.5 0.075 (0.004)
CAD Muscle_Skeletal 1 0.075 (0.004)
CAD Muscle_Skeletal All 0.085 (0.004)
CAD Nerve_Tibial 1e.06 0.039 (0.004)
CAD Nerve_Tibial 1e.05 0.05 (0.004)
CAD Nerve_Tibial 1e.04 0.052 (0.004)
CAD Nerve_Tibial 0.001 0.05 (0.004)
CAD Nerve_Tibial 0.01 0.058 (0.004)
CAD Nerve_Tibial 0.05 0.072 (0.004)
CAD Nerve_Tibial 0.1 0.076 (0.004)
CAD Nerve_Tibial 0.5 0.08 (0.004)
CAD Nerve_Tibial 1 0.08 (0.004)
CAD Nerve_Tibial All 0.086 (0.004)
CAD NTR.BLOOD.RNAARR 1e.06 0.03 (0.004)
CAD NTR.BLOOD.RNAARR 1e.05 0.032 (0.004)
CAD NTR.BLOOD.RNAARR 1e.04 0.037 (0.004)
CAD NTR.BLOOD.RNAARR 0.001 0.042 (0.004)
CAD NTR.BLOOD.RNAARR 0.01 0.05 (0.004)
CAD NTR.BLOOD.RNAARR 0.05 0.054 (0.004)
CAD NTR.BLOOD.RNAARR 0.1 0.057 (0.004)
CAD NTR.BLOOD.RNAARR 0.5 0.059 (0.004)
CAD NTR.BLOOD.RNAARR 1 0.059 (0.004)
CAD NTR.BLOOD.RNAARR All 0.063 (0.004)
CAD Ovary 1e.06 0.015 (0.004)
CAD Ovary 1e.05 0.015 (0.004)
CAD Ovary 1e.04 0.023 (0.004)
CAD Ovary 0.001 0.032 (0.004)
CAD Ovary 0.01 0.044 (0.004)
CAD Ovary 0.05 0.044 (0.004)
CAD Ovary 0.1 0.046 (0.004)
CAD Ovary 0.5 0.05 (0.004)
CAD Ovary 1 0.051 (0.004)
CAD Ovary All 0.054 (0.004)
CAD Pancreas 1e.06 0.033 (0.004)
CAD Pancreas 1e.05 0.037 (0.004)
CAD Pancreas 1e.04 0.039 (0.004)
CAD Pancreas 0.001 0.039 (0.004)
CAD Pancreas 0.01 0.047 (0.004)
CAD Pancreas 0.05 0.056 (0.004)
CAD Pancreas 0.1 0.061 (0.004)
CAD Pancreas 0.5 0.065 (0.004)
CAD Pancreas 1 0.065 (0.004)
CAD Pancreas All 0.068 (0.004)
CAD Pituitary 1e.06 0.021 (0.004)
CAD Pituitary 1e.05 0.027 (0.004)
CAD Pituitary 1e.04 0.027 (0.004)
CAD Pituitary 0.001 0.031 (0.004)
CAD Pituitary 0.01 0.041 (0.004)
CAD Pituitary 0.05 0.049 (0.004)
CAD Pituitary 0.1 0.052 (0.004)
CAD Pituitary 0.5 0.055 (0.004)
CAD Pituitary 1 0.055 (0.004)
CAD Pituitary All 0.057 (0.004)
CAD Prostate 1e.06 0.016 (0.004)
CAD Prostate 1e.05 0.021 (0.004)
CAD Prostate 1e.04 0.032 (0.004)
CAD Prostate 0.001 0.024 (0.004)
CAD Prostate 0.01 0.026 (0.004)
CAD Prostate 0.05 0.032 (0.004)
CAD Prostate 0.1 0.033 (0.004)
CAD Prostate 0.5 0.04 (0.004)
CAD Prostate 1 0.04 (0.004)
CAD Prostate All 0.046 (0.004)
CAD Skin_Not_Sun_Exposed_Suprapubic 1e.06 0.036 (0.004)
CAD Skin_Not_Sun_Exposed_Suprapubic 1e.05 0.045 (0.004)
CAD Skin_Not_Sun_Exposed_Suprapubic 1e.04 0.045 (0.004)
CAD Skin_Not_Sun_Exposed_Suprapubic 0.001 0.043 (0.004)
CAD Skin_Not_Sun_Exposed_Suprapubic 0.01 0.043 (0.004)
CAD Skin_Not_Sun_Exposed_Suprapubic 0.05 0.054 (0.004)
CAD Skin_Not_Sun_Exposed_Suprapubic 0.1 0.06 (0.004)
CAD Skin_Not_Sun_Exposed_Suprapubic 0.5 0.065 (0.004)
CAD Skin_Not_Sun_Exposed_Suprapubic 1 0.066 (0.004)
CAD Skin_Not_Sun_Exposed_Suprapubic All 0.072 (0.004)
CAD Skin_Sun_Exposed_Lower_leg 1e.06 0.033 (0.004)
CAD Skin_Sun_Exposed_Lower_leg 1e.05 0.041 (0.004)
CAD Skin_Sun_Exposed_Lower_leg 1e.04 0.047 (0.004)
CAD Skin_Sun_Exposed_Lower_leg 0.001 0.045 (0.004)
CAD Skin_Sun_Exposed_Lower_leg 0.01 0.05 (0.004)
CAD Skin_Sun_Exposed_Lower_leg 0.05 0.062 (0.004)
CAD Skin_Sun_Exposed_Lower_leg 0.1 0.068 (0.004)
CAD Skin_Sun_Exposed_Lower_leg 0.5 0.073 (0.004)
CAD Skin_Sun_Exposed_Lower_leg 1 0.074 (0.004)
CAD Skin_Sun_Exposed_Lower_leg All 0.077 (0.004)
CAD Small_Intestine_Terminal_Ileum 1e.06 0.024 (0.004)
CAD Small_Intestine_Terminal_Ileum 1e.05 0.021 (0.004)
CAD Small_Intestine_Terminal_Ileum 1e.04 0.024 (0.004)
CAD Small_Intestine_Terminal_Ileum 0.001 0.016 (0.004)
CAD Small_Intestine_Terminal_Ileum 0.01 0.025 (0.004)
CAD Small_Intestine_Terminal_Ileum 0.05 0.035 (0.004)
CAD Small_Intestine_Terminal_Ileum 0.1 0.038 (0.004)
CAD Small_Intestine_Terminal_Ileum 0.5 0.042 (0.004)
CAD Small_Intestine_Terminal_Ileum 1 0.043 (0.004)
CAD Small_Intestine_Terminal_Ileum All 0.048 (0.004)
CAD Spleen 1e.06 0.028 (0.004)
CAD Spleen 1e.05 0.03 (0.004)
CAD Spleen 1e.04 0.045 (0.004)
CAD Spleen 0.001 0.046 (0.004)
CAD Spleen 0.01 0.048 (0.004)
CAD Spleen 0.05 0.054 (0.004)
CAD Spleen 0.1 0.055 (0.004)
CAD Spleen 0.5 0.058 (0.004)
CAD Spleen 1 0.059 (0.004)
CAD Spleen All 0.064 (0.004)
CAD Stomach 1e.06 0.02 (0.004)
CAD Stomach 1e.05 0.019 (0.004)
CAD Stomach 1e.04 0.023 (0.004)
CAD Stomach 0.001 0.03 (0.004)
CAD Stomach 0.01 0.04 (0.004)
CAD Stomach 0.05 0.046 (0.004)
CAD Stomach 0.1 0.052 (0.004)
CAD Stomach 0.5 0.059 (0.004)
CAD Stomach 1 0.059 (0.004)
CAD Stomach All 0.058 (0.004)
CAD Testis 1e.06 0.033 (0.004)
CAD Testis 1e.05 0.04 (0.004)
CAD Testis 1e.04 0.048 (0.004)
CAD Testis 0.001 0.041 (0.004)
CAD Testis 0.01 0.046 (0.004)
CAD Testis 0.05 0.056 (0.004)
CAD Testis 0.1 0.059 (0.004)
CAD Testis 0.5 0.067 (0.004)
CAD Testis 1 0.067 (0.004)
CAD Testis All 0.073 (0.004)
CAD Thyroid 1e.06 0.032 (0.004)
CAD Thyroid 1e.05 0.038 (0.004)
CAD Thyroid 1e.04 0.046 (0.004)
CAD Thyroid 0.001 0.045 (0.004)
CAD Thyroid 0.01 0.057 (0.004)
CAD Thyroid 0.05 0.065 (0.004)
CAD Thyroid 0.1 0.066 (0.004)
CAD Thyroid 0.5 0.077 (0.004)
CAD Thyroid 1 0.077 (0.004)
CAD Thyroid All 0.08 (0.004)
CAD Uterus 1e.06 0.013 (0.004)
CAD Uterus 1e.05 0.018 (0.004)
CAD Uterus 1e.04 0.025 (0.004)
CAD Uterus 0.001 0.025 (0.004)
CAD Uterus 0.01 0.023 (0.004)
CAD Uterus 0.05 0.032 (0.004)
CAD Uterus 0.1 0.037 (0.004)
CAD Uterus 0.5 0.043 (0.004)
CAD Uterus 1 0.044 (0.004)
CAD Uterus All 0.045 (0.004)
CAD Vagina 1e.06 0.016 (0.004)
CAD Vagina 1e.05 0.016 (0.004)
CAD Vagina 1e.04 0.018 (0.004)
CAD Vagina 0.001 0.025 (0.004)
CAD Vagina 0.01 0.026 (0.004)
CAD Vagina 0.05 0.032 (0.004)
CAD Vagina 0.1 0.034 (0.004)
CAD Vagina 0.5 0.039 (0.004)
CAD Vagina 1 0.039 (0.004)
CAD Vagina All 0.039 (0.004)
CAD Whole_Blood 1e.06 0.03 (0.004)
CAD Whole_Blood 1e.05 0.034 (0.004)
CAD Whole_Blood 1e.04 0.044 (0.004)
CAD Whole_Blood 0.001 0.048 (0.004)
CAD Whole_Blood 0.01 0.054 (0.004)
CAD Whole_Blood 0.05 0.065 (0.004)
CAD Whole_Blood 0.1 0.069 (0.004)
CAD Whole_Blood 0.5 0.07 (0.004)
CAD Whole_Blood 1 0.07 (0.004)
CAD Whole_Blood All 0.074 (0.004)
CAD YFS.BLOOD.RNAARR 1e.06 0.03 (0.004)
CAD YFS.BLOOD.RNAARR 1e.05 0.04 (0.004)
CAD YFS.BLOOD.RNAARR 1e.04 0.047 (0.004)
CAD YFS.BLOOD.RNAARR 0.001 0.051 (0.004)
CAD YFS.BLOOD.RNAARR 0.01 0.061 (0.004)
CAD YFS.BLOOD.RNAARR 0.05 0.062 (0.004)
CAD YFS.BLOOD.RNAARR 0.1 0.063 (0.004)
CAD YFS.BLOOD.RNAARR 0.5 0.063 (0.004)
CAD YFS.BLOOD.RNAARR 1 0.063 (0.004)
CAD YFS.BLOOD.RNAARR All 0.071 (0.004)
IBD Adipose_Subcutaneous 1e.06 0.045 (0.004)
IBD Adipose_Subcutaneous 1e.05 0.047 (0.004)
IBD Adipose_Subcutaneous 1e.04 0.05 (0.004)
IBD Adipose_Subcutaneous 0.001 0.054 (0.004)
IBD Adipose_Subcutaneous 0.01 0.058 (0.004)
IBD Adipose_Subcutaneous 0.05 0.062 (0.004)
IBD Adipose_Subcutaneous 0.1 0.06 (0.004)
IBD Adipose_Subcutaneous 0.5 0.06 (0.004)
IBD Adipose_Subcutaneous 1 0.06 (0.004)
IBD Adipose_Subcutaneous All 0.064 (0.004)
IBD Adipose_Visceral_Omentum 1e.06 0.036 (0.004)
IBD Adipose_Visceral_Omentum 1e.05 0.04 (0.004)
IBD Adipose_Visceral_Omentum 1e.04 0.042 (0.004)
IBD Adipose_Visceral_Omentum 0.001 0.049 (0.004)
IBD Adipose_Visceral_Omentum 0.01 0.051 (0.004)
IBD Adipose_Visceral_Omentum 0.05 0.056 (0.004)
IBD Adipose_Visceral_Omentum 0.1 0.057 (0.004)
IBD Adipose_Visceral_Omentum 0.5 0.058 (0.004)
IBD Adipose_Visceral_Omentum 1 0.058 (0.004)
IBD Adipose_Visceral_Omentum All 0.06 (0.004)
IBD Adrenal_Gland 1e.06 0.023 (0.004)
IBD Adrenal_Gland 1e.05 0.028 (0.004)
IBD Adrenal_Gland 1e.04 0.035 (0.004)
IBD Adrenal_Gland 0.001 0.039 (0.004)
IBD Adrenal_Gland 0.01 0.043 (0.004)
IBD Adrenal_Gland 0.05 0.048 (0.004)
IBD Adrenal_Gland 0.1 0.048 (0.004)
IBD Adrenal_Gland 0.5 0.05 (0.004)
IBD Adrenal_Gland 1 0.05 (0.004)
IBD Adrenal_Gland All 0.05 (0.004)
IBD Artery_Aorta 1e.06 0.035 (0.004)
IBD Artery_Aorta 1e.05 0.038 (0.004)
IBD Artery_Aorta 1e.04 0.038 (0.004)
IBD Artery_Aorta 0.001 0.043 (0.004)
IBD Artery_Aorta 0.01 0.051 (0.004)
IBD Artery_Aorta 0.05 0.052 (0.004)
IBD Artery_Aorta 0.1 0.054 (0.004)
IBD Artery_Aorta 0.5 0.051 (0.004)
IBD Artery_Aorta 1 0.051 (0.004)
IBD Artery_Aorta All 0.055 (0.004)
IBD Artery_Coronary 1e.06 0.036 (0.004)
IBD Artery_Coronary 1e.05 0.036 (0.004)
IBD Artery_Coronary 1e.04 0.038 (0.004)
IBD Artery_Coronary 0.001 0.04 (0.004)
IBD Artery_Coronary 0.01 0.043 (0.004)
IBD Artery_Coronary 0.05 0.046 (0.004)
IBD Artery_Coronary 0.1 0.046 (0.004)
IBD Artery_Coronary 0.5 0.043 (0.004)
IBD Artery_Coronary 1 0.043 (0.004)
IBD Artery_Coronary All 0.047 (0.004)
IBD Artery_Tibial 1e.06 0.038 (0.004)
IBD Artery_Tibial 1e.05 0.041 (0.004)
IBD Artery_Tibial 1e.04 0.042 (0.004)
IBD Artery_Tibial 0.001 0.047 (0.004)
IBD Artery_Tibial 0.01 0.052 (0.004)
IBD Artery_Tibial 0.05 0.059 (0.004)
IBD Artery_Tibial 0.1 0.058 (0.004)
IBD Artery_Tibial 0.5 0.058 (0.004)
IBD Artery_Tibial 1 0.058 (0.004)
IBD Artery_Tibial All 0.06 (0.004)
IBD Brain_Amygdala 1e.06 0.03 (0.004)
IBD Brain_Amygdala 1e.05 0.031 (0.004)
IBD Brain_Amygdala 1e.04 0.032 (0.004)
IBD Brain_Amygdala 0.001 0.028 (0.004)
IBD Brain_Amygdala 0.01 0.029 (0.004)
IBD Brain_Amygdala 0.05 0.033 (0.004)
IBD Brain_Amygdala 0.1 0.033 (0.004)
IBD Brain_Amygdala 0.5 0.034 (0.004)
IBD Brain_Amygdala 1 0.034 (0.004)
IBD Brain_Amygdala All 0.036 (0.004)
IBD Brain_Anterior_cingulate_cortex_BA24 1e.06 0.033 (0.004)
IBD Brain_Anterior_cingulate_cortex_BA24 1e.05 0.035 (0.004)
IBD Brain_Anterior_cingulate_cortex_BA24 1e.04 0.037 (0.004)
IBD Brain_Anterior_cingulate_cortex_BA24 0.001 0.036 (0.004)
IBD Brain_Anterior_cingulate_cortex_BA24 0.01 0.039 (0.004)
IBD Brain_Anterior_cingulate_cortex_BA24 0.05 0.038 (0.004)
IBD Brain_Anterior_cingulate_cortex_BA24 0.1 0.04 (0.004)
IBD Brain_Anterior_cingulate_cortex_BA24 0.5 0.041 (0.004)
IBD Brain_Anterior_cingulate_cortex_BA24 1 0.041 (0.004)
IBD Brain_Anterior_cingulate_cortex_BA24 All 0.044 (0.004)
IBD Brain_Caudate_basal_ganglia 1e.06 0.024 (0.004)
IBD Brain_Caudate_basal_ganglia 1e.05 0.025 (0.004)
IBD Brain_Caudate_basal_ganglia 1e.04 0.03 (0.004)
IBD Brain_Caudate_basal_ganglia 0.001 0.032 (0.004)
IBD Brain_Caudate_basal_ganglia 0.01 0.04 (0.004)
IBD Brain_Caudate_basal_ganglia 0.05 0.042 (0.004)
IBD Brain_Caudate_basal_ganglia 0.1 0.041 (0.004)
IBD Brain_Caudate_basal_ganglia 0.5 0.043 (0.004)
IBD Brain_Caudate_basal_ganglia 1 0.043 (0.004)
IBD Brain_Caudate_basal_ganglia All 0.045 (0.004)
IBD Brain_Cerebellar_Hemisphere 1e.06 0.041 (0.004)
IBD Brain_Cerebellar_Hemisphere 1e.05 0.042 (0.004)
IBD Brain_Cerebellar_Hemisphere 1e.04 0.043 (0.004)
IBD Brain_Cerebellar_Hemisphere 0.001 0.043 (0.004)
IBD Brain_Cerebellar_Hemisphere 0.01 0.046 (0.004)
IBD Brain_Cerebellar_Hemisphere 0.05 0.045 (0.004)
IBD Brain_Cerebellar_Hemisphere 0.1 0.043 (0.004)
IBD Brain_Cerebellar_Hemisphere 0.5 0.048 (0.004)
IBD Brain_Cerebellar_Hemisphere 1 0.046 (0.004)
IBD Brain_Cerebellar_Hemisphere All 0.052 (0.004)
IBD Brain_Cerebellum 1e.06 0.042 (0.004)
IBD Brain_Cerebellum 1e.05 0.045 (0.004)
IBD Brain_Cerebellum 1e.04 0.045 (0.004)
IBD Brain_Cerebellum 0.001 0.046 (0.004)
IBD Brain_Cerebellum 0.01 0.048 (0.004)
IBD Brain_Cerebellum 0.05 0.048 (0.004)
IBD Brain_Cerebellum 0.1 0.049 (0.004)
IBD Brain_Cerebellum 0.5 0.054 (0.004)
IBD Brain_Cerebellum 1 0.053 (0.004)
IBD Brain_Cerebellum All 0.057 (0.004)
IBD Brain_Cortex 1e.06 0.038 (0.004)
IBD Brain_Cortex 1e.05 0.039 (0.004)
IBD Brain_Cortex 1e.04 0.041 (0.004)
IBD Brain_Cortex 0.001 0.037 (0.004)
IBD Brain_Cortex 0.01 0.039 (0.004)
IBD Brain_Cortex 0.05 0.045 (0.004)
IBD Brain_Cortex 0.1 0.047 (0.004)
IBD Brain_Cortex 0.5 0.049 (0.004)
IBD Brain_Cortex 1 0.048 (0.004)
IBD Brain_Cortex All 0.051 (0.004)
IBD Brain_Frontal_Cortex_BA9 1e.06 0.024 (0.004)
IBD Brain_Frontal_Cortex_BA9 1e.05 0.026 (0.004)
IBD Brain_Frontal_Cortex_BA9 1e.04 0.029 (0.004)
IBD Brain_Frontal_Cortex_BA9 0.001 0.032 (0.004)
IBD Brain_Frontal_Cortex_BA9 0.01 0.037 (0.004)
IBD Brain_Frontal_Cortex_BA9 0.05 0.037 (0.004)
IBD Brain_Frontal_Cortex_BA9 0.1 0.037 (0.004)
IBD Brain_Frontal_Cortex_BA9 0.5 0.038 (0.004)
IBD Brain_Frontal_Cortex_BA9 1 0.037 (0.004)
IBD Brain_Frontal_Cortex_BA9 All 0.04 (0.004)
IBD Brain_Hippocampus 1e.06 0.03 (0.004)
IBD Brain_Hippocampus 1e.05 0.036 (0.004)
IBD Brain_Hippocampus 1e.04 0.036 (0.004)
IBD Brain_Hippocampus 0.001 0.036 (0.004)
IBD Brain_Hippocampus 0.01 0.034 (0.004)
IBD Brain_Hippocampus 0.05 0.034 (0.004)
IBD Brain_Hippocampus 0.1 0.033 (0.004)
IBD Brain_Hippocampus 0.5 0.037 (0.004)
IBD Brain_Hippocampus 1 0.036 (0.004)
IBD Brain_Hippocampus All 0.042 (0.004)
IBD Brain_Hypothalamus 1e.06 0.025 (0.004)
IBD Brain_Hypothalamus 1e.05 0.026 (0.004)
IBD Brain_Hypothalamus 1e.04 0.028 (0.004)
IBD Brain_Hypothalamus 0.001 0.029 (0.004)
IBD Brain_Hypothalamus 0.01 0.031 (0.004)
IBD Brain_Hypothalamus 0.05 0.035 (0.004)
IBD Brain_Hypothalamus 0.1 0.036 (0.004)
IBD Brain_Hypothalamus 0.5 0.038 (0.004)
IBD Brain_Hypothalamus 1 0.037 (0.004)
IBD Brain_Hypothalamus All 0.037 (0.004)
IBD Brain_Nucleus_accumbens_basal_ganglia 1e.06 0.038 (0.004)
IBD Brain_Nucleus_accumbens_basal_ganglia 1e.05 0.038 (0.004)
IBD Brain_Nucleus_accumbens_basal_ganglia 1e.04 0.04 (0.004)
IBD Brain_Nucleus_accumbens_basal_ganglia 0.001 0.04 (0.004)
IBD Brain_Nucleus_accumbens_basal_ganglia 0.01 0.044 (0.004)
IBD Brain_Nucleus_accumbens_basal_ganglia 0.05 0.044 (0.004)
IBD Brain_Nucleus_accumbens_basal_ganglia 0.1 0.043 (0.004)
IBD Brain_Nucleus_accumbens_basal_ganglia 0.5 0.044 (0.004)
IBD Brain_Nucleus_accumbens_basal_ganglia 1 0.044 (0.004)
IBD Brain_Nucleus_accumbens_basal_ganglia All 0.048 (0.004)
IBD Brain_Putamen_basal_ganglia 1e.06 0.03 (0.004)
IBD Brain_Putamen_basal_ganglia 1e.05 0.037 (0.004)
IBD Brain_Putamen_basal_ganglia 1e.04 0.038 (0.004)
IBD Brain_Putamen_basal_ganglia 0.001 0.032 (0.004)
IBD Brain_Putamen_basal_ganglia 0.01 0.032 (0.004)
IBD Brain_Putamen_basal_ganglia 0.05 0.033 (0.004)
IBD Brain_Putamen_basal_ganglia 0.1 0.036 (0.004)
IBD Brain_Putamen_basal_ganglia 0.5 0.033 (0.004)
IBD Brain_Putamen_basal_ganglia 1 0.033 (0.004)
IBD Brain_Putamen_basal_ganglia All 0.042 (0.004)
IBD Brain_Spinal_cord_cervical_c-1 1e.06 0.026 (0.004)
IBD Brain_Spinal_cord_cervical_c-1 1e.05 0.027 (0.004)
IBD Brain_Spinal_cord_cervical_c-1 1e.04 0.027 (0.004)
IBD Brain_Spinal_cord_cervical_c-1 0.001 0.028 (0.004)
IBD Brain_Spinal_cord_cervical_c-1 0.01 0.026 (0.004)
IBD Brain_Spinal_cord_cervical_c-1 0.05 0.023 (0.004)
IBD Brain_Spinal_cord_cervical_c-1 0.1 0.025 (0.004)
IBD Brain_Spinal_cord_cervical_c-1 0.5 0.026 (0.004)
IBD Brain_Spinal_cord_cervical_c-1 1 0.025 (0.004)
IBD Brain_Spinal_cord_cervical_c-1 All 0.032 (0.004)
IBD Brain_Substantia_nigra 1e.06 0.022 (0.004)
IBD Brain_Substantia_nigra 1e.05 0.022 (0.004)
IBD Brain_Substantia_nigra 1e.04 0.028 (0.004)
IBD Brain_Substantia_nigra 0.001 0.015 (0.004)
IBD Brain_Substantia_nigra 0.01 0.023 (0.004)
IBD Brain_Substantia_nigra 0.05 0.023 (0.004)
IBD Brain_Substantia_nigra 0.1 0.022 (0.004)
IBD Brain_Substantia_nigra 0.5 0.026 (0.004)
IBD Brain_Substantia_nigra 1 0.026 (0.004)
IBD Brain_Substantia_nigra All 0.034 (0.004)
IBD Breast_Mammary_Tissue 1e.06 0.035 (0.004)
IBD Breast_Mammary_Tissue 1e.05 0.038 (0.004)
IBD Breast_Mammary_Tissue 1e.04 0.04 (0.004)
IBD Breast_Mammary_Tissue 0.001 0.04 (0.004)
IBD Breast_Mammary_Tissue 0.01 0.044 (0.004)
IBD Breast_Mammary_Tissue 0.05 0.047 (0.004)
IBD Breast_Mammary_Tissue 0.1 0.05 (0.004)
IBD Breast_Mammary_Tissue 0.5 0.052 (0.004)
IBD Breast_Mammary_Tissue 1 0.052 (0.004)
IBD Breast_Mammary_Tissue All 0.054 (0.004)
IBD Cells_EBV-transformed_lymphocytes 1e.06 0.041 (0.004)
IBD Cells_EBV-transformed_lymphocytes 1e.05 0.041 (0.004)
IBD Cells_EBV-transformed_lymphocytes 1e.04 0.043 (0.004)
IBD Cells_EBV-transformed_lymphocytes 0.001 0.042 (0.004)
IBD Cells_EBV-transformed_lymphocytes 0.01 0.042 (0.004)
IBD Cells_EBV-transformed_lymphocytes 0.05 0.042 (0.004)
IBD Cells_EBV-transformed_lymphocytes 0.1 0.038 (0.004)
IBD Cells_EBV-transformed_lymphocytes 0.5 0.038 (0.004)
IBD Cells_EBV-transformed_lymphocytes 1 0.038 (0.004)
IBD Cells_EBV-transformed_lymphocytes All 0.047 (0.004)
IBD Cells_Transformed_fibroblasts 1e.06 0.047 (0.004)
IBD Cells_Transformed_fibroblasts 1e.05 0.044 (0.004)
IBD Cells_Transformed_fibroblasts 1e.04 0.046 (0.004)
IBD Cells_Transformed_fibroblasts 0.001 0.049 (0.004)
IBD Cells_Transformed_fibroblasts 0.01 0.05 (0.004)
IBD Cells_Transformed_fibroblasts 0.05 0.057 (0.004)
IBD Cells_Transformed_fibroblasts 0.1 0.059 (0.004)
IBD Cells_Transformed_fibroblasts 0.5 0.057 (0.004)
IBD Cells_Transformed_fibroblasts 1 0.058 (0.004)
IBD Cells_Transformed_fibroblasts All 0.061 (0.004)
IBD CMC.BRAIN.RNASEQ 1e.06 0.04 (0.004)
IBD CMC.BRAIN.RNASEQ 1e.05 0.041 (0.004)
IBD CMC.BRAIN.RNASEQ 1e.04 0.048 (0.004)
IBD CMC.BRAIN.RNASEQ 0.001 0.049 (0.004)
IBD CMC.BRAIN.RNASEQ 0.01 0.051 (0.004)
IBD CMC.BRAIN.RNASEQ 0.05 0.053 (0.004)
IBD CMC.BRAIN.RNASEQ 0.1 0.055 (0.004)
IBD CMC.BRAIN.RNASEQ 0.5 0.051 (0.004)
IBD CMC.BRAIN.RNASEQ 1 0.052 (0.004)
IBD CMC.BRAIN.RNASEQ All 0.058 (0.004)
IBD CMC.BRAIN.RNASEQ_SPLICING 1e.06 0.04 (0.004)
IBD CMC.BRAIN.RNASEQ_SPLICING 1e.05 0.037 (0.004)
IBD CMC.BRAIN.RNASEQ_SPLICING 1e.04 0.038 (0.004)
IBD CMC.BRAIN.RNASEQ_SPLICING 0.001 0.039 (0.004)
IBD CMC.BRAIN.RNASEQ_SPLICING 0.01 0.041 (0.004)
IBD CMC.BRAIN.RNASEQ_SPLICING 0.05 0.045 (0.004)
IBD CMC.BRAIN.RNASEQ_SPLICING 0.1 0.047 (0.004)
IBD CMC.BRAIN.RNASEQ_SPLICING 0.5 0.044 (0.004)
IBD CMC.BRAIN.RNASEQ_SPLICING 1 0.043 (0.004)
IBD CMC.BRAIN.RNASEQ_SPLICING All 0.047 (0.004)
IBD Colon_Sigmoid 1e.06 0.04 (0.004)
IBD Colon_Sigmoid 1e.05 0.042 (0.004)
IBD Colon_Sigmoid 1e.04 0.044 (0.004)
IBD Colon_Sigmoid 0.001 0.043 (0.004)
IBD Colon_Sigmoid 0.01 0.045 (0.004)
IBD Colon_Sigmoid 0.05 0.049 (0.004)
IBD Colon_Sigmoid 0.1 0.05 (0.004)
IBD Colon_Sigmoid 0.5 0.051 (0.004)
IBD Colon_Sigmoid 1 0.05 (0.004)
IBD Colon_Sigmoid All 0.054 (0.004)
IBD Colon_Transverse 1e.06 0.042 (0.004)
IBD Colon_Transverse 1e.05 0.044 (0.004)
IBD Colon_Transverse 1e.04 0.042 (0.004)
IBD Colon_Transverse 0.001 0.047 (0.004)
IBD Colon_Transverse 0.01 0.052 (0.004)
IBD Colon_Transverse 0.05 0.05 (0.004)
IBD Colon_Transverse 0.1 0.051 (0.004)
IBD Colon_Transverse 0.5 0.051 (0.004)
IBD Colon_Transverse 1 0.05 (0.004)
IBD Colon_Transverse All 0.055 (0.004)
IBD Esophagus_Gastroesophageal_Junction 1e.06 0.031 (0.004)
IBD Esophagus_Gastroesophageal_Junction 1e.05 0.035 (0.004)
IBD Esophagus_Gastroesophageal_Junction 1e.04 0.038 (0.004)
IBD Esophagus_Gastroesophageal_Junction 0.001 0.041 (0.004)
IBD Esophagus_Gastroesophageal_Junction 0.01 0.044 (0.004)
IBD Esophagus_Gastroesophageal_Junction 0.05 0.047 (0.004)
IBD Esophagus_Gastroesophageal_Junction 0.1 0.05 (0.004)
IBD Esophagus_Gastroesophageal_Junction 0.5 0.053 (0.004)
IBD Esophagus_Gastroesophageal_Junction 1 0.051 (0.004)
IBD Esophagus_Gastroesophageal_Junction All 0.053 (0.004)
IBD Esophagus_Mucosa 1e.06 0.046 (0.004)
IBD Esophagus_Mucosa 1e.05 0.049 (0.004)
IBD Esophagus_Mucosa 1e.04 0.052 (0.004)
IBD Esophagus_Mucosa 0.001 0.051 (0.004)
IBD Esophagus_Mucosa 0.01 0.053 (0.004)
IBD Esophagus_Mucosa 0.05 0.055 (0.004)
IBD Esophagus_Mucosa 0.1 0.057 (0.004)
IBD Esophagus_Mucosa 0.5 0.059 (0.004)
IBD Esophagus_Mucosa 1 0.059 (0.004)
IBD Esophagus_Mucosa All 0.063 (0.004)
IBD Esophagus_Muscularis 1e.06 0.04 (0.004)
IBD Esophagus_Muscularis 1e.05 0.045 (0.004)
IBD Esophagus_Muscularis 1e.04 0.045 (0.004)
IBD Esophagus_Muscularis 0.001 0.048 (0.004)
IBD Esophagus_Muscularis 0.01 0.054 (0.004)
IBD Esophagus_Muscularis 0.05 0.057 (0.004)
IBD Esophagus_Muscularis 0.1 0.058 (0.004)
IBD Esophagus_Muscularis 0.5 0.062 (0.004)
IBD Esophagus_Muscularis 1 0.062 (0.004)
IBD Esophagus_Muscularis All 0.063 (0.004)
IBD Heart_Atrial_Appendage 1e.06 0.029 (0.004)
IBD Heart_Atrial_Appendage 1e.05 0.034 (0.004)
IBD Heart_Atrial_Appendage 1e.04 0.039 (0.004)
IBD Heart_Atrial_Appendage 0.001 0.042 (0.004)
IBD Heart_Atrial_Appendage 0.01 0.043 (0.004)
IBD Heart_Atrial_Appendage 0.05 0.047 (0.004)
IBD Heart_Atrial_Appendage 0.1 0.048 (0.004)
IBD Heart_Atrial_Appendage 0.5 0.05 (0.004)
IBD Heart_Atrial_Appendage 1 0.05 (0.004)
IBD Heart_Atrial_Appendage All 0.053 (0.004)
IBD Heart_Left_Ventricle 1e.06 0.041 (0.004)
IBD Heart_Left_Ventricle 1e.05 0.04 (0.004)
IBD Heart_Left_Ventricle 1e.04 0.041 (0.004)
IBD Heart_Left_Ventricle 0.001 0.046 (0.004)
IBD Heart_Left_Ventricle 0.01 0.051 (0.004)
IBD Heart_Left_Ventricle 0.05 0.051 (0.004)
IBD Heart_Left_Ventricle 0.1 0.054 (0.004)
IBD Heart_Left_Ventricle 0.5 0.055 (0.004)
IBD Heart_Left_Ventricle 1 0.055 (0.004)
IBD Heart_Left_Ventricle All 0.058 (0.004)
IBD Liver 1e.06 0.03 (0.004)
IBD Liver 1e.05 0.033 (0.004)
IBD Liver 1e.04 0.035 (0.004)
IBD Liver 0.001 0.041 (0.004)
IBD Liver 0.01 0.042 (0.004)
IBD Liver 0.05 0.043 (0.004)
IBD Liver 0.1 0.044 (0.004)
IBD Liver 0.5 0.044 (0.004)
IBD Liver 1 0.043 (0.004)
IBD Liver All 0.047 (0.004)
IBD Lung 1e.06 0.04 (0.004)
IBD Lung 1e.05 0.047 (0.004)
IBD Lung 1e.04 0.047 (0.004)
IBD Lung 0.001 0.05 (0.004)
IBD Lung 0.01 0.053 (0.004)
IBD Lung 0.05 0.057 (0.004)
IBD Lung 0.1 0.059 (0.004)
IBD Lung 0.5 0.061 (0.004)
IBD Lung 1 0.061 (0.004)
IBD Lung All 0.063 (0.004)
IBD METSIM.ADIPOSE.RNASEQ 1e.06 0.042 (0.004)
IBD METSIM.ADIPOSE.RNASEQ 1e.05 0.048 (0.004)
IBD METSIM.ADIPOSE.RNASEQ 1e.04 0.051 (0.004)
IBD METSIM.ADIPOSE.RNASEQ 0.001 0.051 (0.004)
IBD METSIM.ADIPOSE.RNASEQ 0.01 0.056 (0.004)
IBD METSIM.ADIPOSE.RNASEQ 0.05 0.057 (0.004)
IBD METSIM.ADIPOSE.RNASEQ 0.1 0.058 (0.004)
IBD METSIM.ADIPOSE.RNASEQ 0.5 0.058 (0.004)
IBD METSIM.ADIPOSE.RNASEQ 1 0.058 (0.004)
IBD METSIM.ADIPOSE.RNASEQ All 0.062 (0.004)
IBD Minor_Salivary_Gland 1e.06 0.036 (0.004)
IBD Minor_Salivary_Gland 1e.05 0.038 (0.004)
IBD Minor_Salivary_Gland 1e.04 0.042 (0.004)
IBD Minor_Salivary_Gland 0.001 0.036 (0.004)
IBD Minor_Salivary_Gland 0.01 0.037 (0.004)
IBD Minor_Salivary_Gland 0.05 0.034 (0.004)
IBD Minor_Salivary_Gland 0.1 0.036 (0.004)
IBD Minor_Salivary_Gland 0.5 0.034 (0.004)
IBD Minor_Salivary_Gland 1 0.034 (0.004)
IBD Minor_Salivary_Gland All 0.043 (0.004)
IBD Muscle_Skeletal 1e.06 0.047 (0.004)
IBD Muscle_Skeletal 1e.05 0.049 (0.004)
IBD Muscle_Skeletal 1e.04 0.05 (0.004)
IBD Muscle_Skeletal 0.001 0.051 (0.004)
IBD Muscle_Skeletal 0.01 0.057 (0.004)
IBD Muscle_Skeletal 0.05 0.063 (0.004)
IBD Muscle_Skeletal 0.1 0.064 (0.004)
IBD Muscle_Skeletal 0.5 0.062 (0.004)
IBD Muscle_Skeletal 1 0.061 (0.004)
IBD Muscle_Skeletal All 0.066 (0.004)
IBD Nerve_Tibial 1e.06 0.042 (0.004)
IBD Nerve_Tibial 1e.05 0.046 (0.004)
IBD Nerve_Tibial 1e.04 0.048 (0.004)
IBD Nerve_Tibial 0.001 0.051 (0.004)
IBD Nerve_Tibial 0.01 0.058 (0.004)
IBD Nerve_Tibial 0.05 0.059 (0.004)
IBD Nerve_Tibial 0.1 0.064 (0.004)
IBD Nerve_Tibial 0.5 0.061 (0.004)
IBD Nerve_Tibial 1 0.06 (0.004)
IBD Nerve_Tibial All 0.065 (0.004)
IBD NTR.BLOOD.RNAARR 1e.06 0.044 (0.004)
IBD NTR.BLOOD.RNAARR 1e.05 0.046 (0.004)
IBD NTR.BLOOD.RNAARR 1e.04 0.047 (0.004)
IBD NTR.BLOOD.RNAARR 0.001 0.045 (0.004)
IBD NTR.BLOOD.RNAARR 0.01 0.05 (0.004)
IBD NTR.BLOOD.RNAARR 0.05 0.049 (0.004)
IBD NTR.BLOOD.RNAARR 0.1 0.05 (0.004)
IBD NTR.BLOOD.RNAARR 0.5 0.051 (0.004)
IBD NTR.BLOOD.RNAARR 1 0.051 (0.004)
IBD NTR.BLOOD.RNAARR All 0.055 (0.004)
IBD Ovary 1e.06 0.03 (0.004)
IBD Ovary 1e.05 0.031 (0.004)
IBD Ovary 1e.04 0.035 (0.004)
IBD Ovary 0.001 0.038 (0.004)
IBD Ovary 0.01 0.043 (0.004)
IBD Ovary 0.05 0.047 (0.004)
IBD Ovary 0.1 0.049 (0.004)
IBD Ovary 0.5 0.048 (0.004)
IBD Ovary 1 0.047 (0.004)
IBD Ovary All 0.049 (0.004)
IBD Pancreas 1e.06 0.038 (0.004)
IBD Pancreas 1e.05 0.041 (0.004)
IBD Pancreas 1e.04 0.045 (0.004)
IBD Pancreas 0.001 0.046 (0.004)
IBD Pancreas 0.01 0.052 (0.004)
IBD Pancreas 0.05 0.051 (0.004)
IBD Pancreas 0.1 0.049 (0.004)
IBD Pancreas 0.5 0.051 (0.004)
IBD Pancreas 1 0.051 (0.004)
IBD Pancreas All 0.055 (0.004)
IBD Pituitary 1e.06 0.03 (0.004)
IBD Pituitary 1e.05 0.033 (0.004)
IBD Pituitary 1e.04 0.034 (0.004)
IBD Pituitary 0.001 0.038 (0.004)
IBD Pituitary 0.01 0.042 (0.004)
IBD Pituitary 0.05 0.043 (0.004)
IBD Pituitary 0.1 0.043 (0.004)
IBD Pituitary 0.5 0.044 (0.004)
IBD Pituitary 1 0.043 (0.004)
IBD Pituitary All 0.046 (0.004)
IBD Prostate 1e.06 0.031 (0.004)
IBD Prostate 1e.05 0.035 (0.004)
IBD Prostate 1e.04 0.036 (0.004)
IBD Prostate 0.001 0.036 (0.004)
IBD Prostate 0.01 0.042 (0.004)
IBD Prostate 0.05 0.042 (0.004)
IBD Prostate 0.1 0.043 (0.004)
IBD Prostate 0.5 0.044 (0.004)
IBD Prostate 1 0.045 (0.004)
IBD Prostate All 0.047 (0.004)
IBD Skin_Not_Sun_Exposed_Suprapubic 1e.06 0.041 (0.004)
IBD Skin_Not_Sun_Exposed_Suprapubic 1e.05 0.044 (0.004)
IBD Skin_Not_Sun_Exposed_Suprapubic 1e.04 0.045 (0.004)
IBD Skin_Not_Sun_Exposed_Suprapubic 0.001 0.049 (0.004)
IBD Skin_Not_Sun_Exposed_Suprapubic 0.01 0.054 (0.004)
IBD Skin_Not_Sun_Exposed_Suprapubic 0.05 0.054 (0.004)
IBD Skin_Not_Sun_Exposed_Suprapubic 0.1 0.056 (0.004)
IBD Skin_Not_Sun_Exposed_Suprapubic 0.5 0.058 (0.004)
IBD Skin_Not_Sun_Exposed_Suprapubic 1 0.058 (0.004)
IBD Skin_Not_Sun_Exposed_Suprapubic All 0.06 (0.004)
IBD Skin_Sun_Exposed_Lower_leg 1e.06 0.041 (0.004)
IBD Skin_Sun_Exposed_Lower_leg 1e.05 0.046 (0.004)
IBD Skin_Sun_Exposed_Lower_leg 1e.04 0.048 (0.004)
IBD Skin_Sun_Exposed_Lower_leg 0.001 0.055 (0.004)
IBD Skin_Sun_Exposed_Lower_leg 0.01 0.058 (0.004)
IBD Skin_Sun_Exposed_Lower_leg 0.05 0.062 (0.004)
IBD Skin_Sun_Exposed_Lower_leg 0.1 0.066 (0.004)
IBD Skin_Sun_Exposed_Lower_leg 0.5 0.067 (0.004)
IBD Skin_Sun_Exposed_Lower_leg 1 0.067 (0.004)
IBD Skin_Sun_Exposed_Lower_leg All 0.068 (0.004)
IBD Small_Intestine_Terminal_Ileum 1e.06 0.043 (0.004)
IBD Small_Intestine_Terminal_Ileum 1e.05 0.042 (0.004)
IBD Small_Intestine_Terminal_Ileum 1e.04 0.044 (0.004)
IBD Small_Intestine_Terminal_Ileum 0.001 0.035 (0.004)
IBD Small_Intestine_Terminal_Ileum 0.01 0.037 (0.004)
IBD Small_Intestine_Terminal_Ileum 0.05 0.038 (0.004)
IBD Small_Intestine_Terminal_Ileum 0.1 0.041 (0.004)
IBD Small_Intestine_Terminal_Ileum 0.5 0.043 (0.004)
IBD Small_Intestine_Terminal_Ileum 1 0.042 (0.004)
IBD Small_Intestine_Terminal_Ileum All 0.05 (0.004)
IBD Spleen 1e.06 0.04 (0.004)
IBD Spleen 1e.05 0.043 (0.004)
IBD Spleen 1e.04 0.045 (0.004)
IBD Spleen 0.001 0.047 (0.004)
IBD Spleen 0.01 0.049 (0.004)
IBD Spleen 0.05 0.049 (0.004)
IBD Spleen 0.1 0.05 (0.004)
IBD Spleen 0.5 0.051 (0.004)
IBD Spleen 1 0.052 (0.004)
IBD Spleen All 0.055 (0.004)
IBD Stomach 1e.06 0.042 (0.004)
IBD Stomach 1e.05 0.04 (0.004)
IBD Stomach 1e.04 0.043 (0.004)
IBD Stomach 0.001 0.044 (0.004)
IBD Stomach 0.01 0.045 (0.004)
IBD Stomach 0.05 0.049 (0.004)
IBD Stomach 0.1 0.05 (0.004)
IBD Stomach 0.5 0.051 (0.004)
IBD Stomach 1 0.052 (0.004)
IBD Stomach All 0.054 (0.004)
IBD Testis 1e.06 0.041 (0.004)
IBD Testis 1e.05 0.047 (0.004)
IBD Testis 1e.04 0.049 (0.004)
IBD Testis 0.001 0.047 (0.004)
IBD Testis 0.01 0.051 (0.004)
IBD Testis 0.05 0.059 (0.004)
IBD Testis 0.1 0.06 (0.004)
IBD Testis 0.5 0.061 (0.004)
IBD Testis 1 0.061 (0.004)
IBD Testis All 0.065 (0.004)
IBD Thyroid 1e.06 0.044 (0.004)
IBD Thyroid 1e.05 0.047 (0.004)
IBD Thyroid 1e.04 0.048 (0.004)
IBD Thyroid 0.001 0.053 (0.004)
IBD Thyroid 0.01 0.056 (0.004)
IBD Thyroid 0.05 0.061 (0.004)
IBD Thyroid 0.1 0.062 (0.004)
IBD Thyroid 0.5 0.06 (0.004)
IBD Thyroid 1 0.059 (0.004)
IBD Thyroid All 0.064 (0.004)
IBD Uterus 1e.06 0.026 (0.004)
IBD Uterus 1e.05 0.025 (0.004)
IBD Uterus 1e.04 0.026 (0.004)
IBD Uterus 0.001 0.021 (0.004)
IBD Uterus 0.01 0.028 (0.004)
IBD Uterus 0.05 0.028 (0.004)
IBD Uterus 0.1 0.033 (0.004)
IBD Uterus 0.5 0.031 (0.004)
IBD Uterus 1 0.031 (0.004)
IBD Uterus All 0.04 (0.004)
IBD Vagina 1e.06 0.023 (0.004)
IBD Vagina 1e.05 0.026 (0.004)
IBD Vagina 1e.04 0.026 (0.004)
IBD Vagina 0.001 0.028 (0.004)
IBD Vagina 0.01 0.029 (0.004)
IBD Vagina 0.05 0.03 (0.004)
IBD Vagina 0.1 0.029 (0.004)
IBD Vagina 0.5 0.027 (0.004)
IBD Vagina 1 0.027 (0.004)
IBD Vagina All 0.03 (0.004)
IBD Whole_Blood 1e.06 0.045 (0.004)
IBD Whole_Blood 1e.05 0.054 (0.004)
IBD Whole_Blood 1e.04 0.058 (0.004)
IBD Whole_Blood 0.001 0.055 (0.004)
IBD Whole_Blood 0.01 0.064 (0.004)
IBD Whole_Blood 0.05 0.067 (0.004)
IBD Whole_Blood 0.1 0.067 (0.004)
IBD Whole_Blood 0.5 0.065 (0.004)
IBD Whole_Blood 1 0.064 (0.004)
IBD Whole_Blood All 0.07 (0.004)
IBD YFS.BLOOD.RNAARR 1e.06 0.045 (0.004)
IBD YFS.BLOOD.RNAARR 1e.05 0.044 (0.004)
IBD YFS.BLOOD.RNAARR 1e.04 0.049 (0.004)
IBD YFS.BLOOD.RNAARR 0.001 0.049 (0.004)
IBD YFS.BLOOD.RNAARR 0.01 0.053 (0.004)
IBD YFS.BLOOD.RNAARR 0.05 0.058 (0.004)
IBD YFS.BLOOD.RNAARR 0.1 0.057 (0.004)
IBD YFS.BLOOD.RNAARR 0.5 0.058 (0.004)
IBD YFS.BLOOD.RNAARR 1 0.059 (0.004)
IBD YFS.BLOOD.RNAARR All 0.062 (0.004)
RheuArth Adipose_Subcutaneous 1e.06 0.042 (0.004)
RheuArth Adipose_Subcutaneous 1e.05 0.041 (0.004)
RheuArth Adipose_Subcutaneous 1e.04 0.047 (0.004)
RheuArth Adipose_Subcutaneous 0.001 0.052 (0.004)
RheuArth Adipose_Subcutaneous 0.01 0.061 (0.004)
RheuArth Adipose_Subcutaneous 0.05 0.063 (0.004)
RheuArth Adipose_Subcutaneous 0.1 0.067 (0.004)
RheuArth Adipose_Subcutaneous 0.5 0.064 (0.004)
RheuArth Adipose_Subcutaneous 1 0.065 (0.004)
RheuArth Adipose_Subcutaneous All 0.07 (0.004)
RheuArth Adipose_Visceral_Omentum 1e.06 0.063 (0.004)
RheuArth Adipose_Visceral_Omentum 1e.05 0.061 (0.004)
RheuArth Adipose_Visceral_Omentum 1e.04 0.065 (0.004)
RheuArth Adipose_Visceral_Omentum 0.001 0.066 (0.004)
RheuArth Adipose_Visceral_Omentum 0.01 0.07 (0.004)
RheuArth Adipose_Visceral_Omentum 0.05 0.068 (0.004)
RheuArth Adipose_Visceral_Omentum 0.1 0.068 (0.004)
RheuArth Adipose_Visceral_Omentum 0.5 0.069 (0.004)
RheuArth Adipose_Visceral_Omentum 1 0.07 (0.004)
RheuArth Adipose_Visceral_Omentum All 0.082 (0.004)
RheuArth Adrenal_Gland 1e.06 0.063 (0.004)
RheuArth Adrenal_Gland 1e.05 0.064 (0.004)
RheuArth Adrenal_Gland 1e.04 0.064 (0.004)
RheuArth Adrenal_Gland 0.001 0.069 (0.004)
RheuArth Adrenal_Gland 0.01 0.067 (0.004)
RheuArth Adrenal_Gland 0.05 0.068 (0.004)
RheuArth Adrenal_Gland 0.1 0.064 (0.004)
RheuArth Adrenal_Gland 0.5 0.06 (0.004)
RheuArth Adrenal_Gland 1 0.059 (0.004)
RheuArth Adrenal_Gland All 0.075 (0.004)
RheuArth Artery_Aorta 1e.06 0.062 (0.004)
RheuArth Artery_Aorta 1e.05 0.065 (0.004)
RheuArth Artery_Aorta 1e.04 0.066 (0.004)
RheuArth Artery_Aorta 0.001 0.068 (0.004)
RheuArth Artery_Aorta 0.01 0.067 (0.004)
RheuArth Artery_Aorta 0.05 0.061 (0.004)
RheuArth Artery_Aorta 0.1 0.063 (0.004)
RheuArth Artery_Aorta 0.5 0.064 (0.004)
RheuArth Artery_Aorta 1 0.064 (0.004)
RheuArth Artery_Aorta All 0.079 (0.004)
RheuArth Artery_Coronary 1e.06 0.07 (0.004)
RheuArth Artery_Coronary 1e.05 0.072 (0.004)
RheuArth Artery_Coronary 1e.04 0.071 (0.004)
RheuArth Artery_Coronary 0.001 0.072 (0.004)
RheuArth Artery_Coronary 0.01 0.064 (0.004)
RheuArth Artery_Coronary 0.05 0.057 (0.004)
RheuArth Artery_Coronary 0.1 0.055 (0.004)
RheuArth Artery_Coronary 0.5 0.057 (0.004)
RheuArth Artery_Coronary 1 0.057 (0.004)
RheuArth Artery_Coronary All 0.079 (0.004)
RheuArth Artery_Tibial 1e.06 0.06 (0.004)
RheuArth Artery_Tibial 1e.05 0.061 (0.004)
RheuArth Artery_Tibial 1e.04 0.065 (0.004)
RheuArth Artery_Tibial 0.001 0.069 (0.004)
RheuArth Artery_Tibial 0.01 0.073 (0.004)
RheuArth Artery_Tibial 0.05 0.074 (0.004)
RheuArth Artery_Tibial 0.1 0.072 (0.004)
RheuArth Artery_Tibial 0.5 0.072 (0.004)
RheuArth Artery_Tibial 1 0.072 (0.004)
RheuArth Artery_Tibial All 0.081 (0.004)
RheuArth Brain_Amygdala 1e.06 0.077 (0.004)
RheuArth Brain_Amygdala 1e.05 0.077 (0.004)
RheuArth Brain_Amygdala 1e.04 0.077 (0.004)
RheuArth Brain_Amygdala 0.001 0.073 (0.004)
RheuArth Brain_Amygdala 0.01 0.07 (0.004)
RheuArth Brain_Amygdala 0.05 0.068 (0.004)
RheuArth Brain_Amygdala 0.1 0.067 (0.004)
RheuArth Brain_Amygdala 0.5 0.065 (0.004)
RheuArth Brain_Amygdala 1 0.064 (0.004)
RheuArth Brain_Amygdala All 0.083 (0.004)
RheuArth Brain_Anterior_cingulate_cortex_BA24 1e.06 0.026 (0.004)
RheuArth Brain_Anterior_cingulate_cortex_BA24 1e.05 0.029 (0.004)
RheuArth Brain_Anterior_cingulate_cortex_BA24 1e.04 0.031 (0.004)
RheuArth Brain_Anterior_cingulate_cortex_BA24 0.001 0.037 (0.004)
RheuArth Brain_Anterior_cingulate_cortex_BA24 0.01 0.038 (0.004)
RheuArth Brain_Anterior_cingulate_cortex_BA24 0.05 0.042 (0.004)
RheuArth Brain_Anterior_cingulate_cortex_BA24 0.1 0.042 (0.004)
RheuArth Brain_Anterior_cingulate_cortex_BA24 0.5 0.044 (0.004)
RheuArth Brain_Anterior_cingulate_cortex_BA24 1 0.044 (0.004)
RheuArth Brain_Anterior_cingulate_cortex_BA24 All 0.047 (0.004)
RheuArth Brain_Caudate_basal_ganglia 1e.06 0.066 (0.004)
RheuArth Brain_Caudate_basal_ganglia 1e.05 0.064 (0.004)
RheuArth Brain_Caudate_basal_ganglia 1e.04 0.064 (0.004)
RheuArth Brain_Caudate_basal_ganglia 0.001 0.063 (0.004)
RheuArth Brain_Caudate_basal_ganglia 0.01 0.064 (0.004)
RheuArth Brain_Caudate_basal_ganglia 0.05 0.064 (0.004)
RheuArth Brain_Caudate_basal_ganglia 0.1 0.064 (0.004)
RheuArth Brain_Caudate_basal_ganglia 0.5 0.062 (0.004)
RheuArth Brain_Caudate_basal_ganglia 1 0.06 (0.004)
RheuArth Brain_Caudate_basal_ganglia All 0.077 (0.004)
RheuArth Brain_Cerebellar_Hemisphere 1e.06 0.051 (0.004)
RheuArth Brain_Cerebellar_Hemisphere 1e.05 0.051 (0.004)
RheuArth Brain_Cerebellar_Hemisphere 1e.04 0.052 (0.004)
RheuArth Brain_Cerebellar_Hemisphere 0.001 0.058 (0.004)
RheuArth Brain_Cerebellar_Hemisphere 0.01 0.063 (0.004)
RheuArth Brain_Cerebellar_Hemisphere 0.05 0.061 (0.004)
RheuArth Brain_Cerebellar_Hemisphere 0.1 0.062 (0.004)
RheuArth Brain_Cerebellar_Hemisphere 0.5 0.067 (0.004)
RheuArth Brain_Cerebellar_Hemisphere 1 0.065 (0.004)
RheuArth Brain_Cerebellar_Hemisphere All 0.071 (0.004)
RheuArth Brain_Cerebellum 1e.06 0.035 (0.004)
RheuArth Brain_Cerebellum 1e.05 0.036 (0.004)
RheuArth Brain_Cerebellum 1e.04 0.04 (0.004)
RheuArth Brain_Cerebellum 0.001 0.046 (0.004)
RheuArth Brain_Cerebellum 0.01 0.056 (0.004)
RheuArth Brain_Cerebellum 0.05 0.06 (0.004)
RheuArth Brain_Cerebellum 0.1 0.058 (0.004)
RheuArth Brain_Cerebellum 0.5 0.063 (0.004)
RheuArth Brain_Cerebellum 1 0.062 (0.004)
RheuArth Brain_Cerebellum All 0.066 (0.004)
RheuArth Brain_Cortex 1e.06 0.084 (0.004)
RheuArth Brain_Cortex 1e.05 0.085 (0.004)
RheuArth Brain_Cortex 1e.04 0.082 (0.004)
RheuArth Brain_Cortex 0.001 0.08 (0.004)
RheuArth Brain_Cortex 0.01 0.078 (0.004)
RheuArth Brain_Cortex 0.05 0.074 (0.004)
RheuArth Brain_Cortex 0.1 0.075 (0.004)
RheuArth Brain_Cortex 0.5 0.072 (0.004)
RheuArth Brain_Cortex 1 0.072 (0.004)
RheuArth Brain_Cortex All 0.097 (0.004)
RheuArth Brain_Frontal_Cortex_BA9 1e.06 0.039 (0.004)
RheuArth Brain_Frontal_Cortex_BA9 1e.05 0.041 (0.004)
RheuArth Brain_Frontal_Cortex_BA9 1e.04 0.043 (0.004)
RheuArth Brain_Frontal_Cortex_BA9 0.001 0.047 (0.004)
RheuArth Brain_Frontal_Cortex_BA9 0.01 0.051 (0.004)
RheuArth Brain_Frontal_Cortex_BA9 0.05 0.053 (0.004)
RheuArth Brain_Frontal_Cortex_BA9 0.1 0.052 (0.004)
RheuArth Brain_Frontal_Cortex_BA9 0.5 0.052 (0.004)
RheuArth Brain_Frontal_Cortex_BA9 1 0.053 (0.004)
RheuArth Brain_Frontal_Cortex_BA9 All 0.058 (0.004)
RheuArth Brain_Hippocampus 1e.06 0.031 (0.004)
RheuArth Brain_Hippocampus 1e.05 0.031 (0.004)
RheuArth Brain_Hippocampus 1e.04 0.033 (0.004)
RheuArth Brain_Hippocampus 0.001 0.04 (0.004)
RheuArth Brain_Hippocampus 0.01 0.043 (0.004)
RheuArth Brain_Hippocampus 0.05 0.046 (0.004)
RheuArth Brain_Hippocampus 0.1 0.05 (0.004)
RheuArth Brain_Hippocampus 0.5 0.049 (0.004)
RheuArth Brain_Hippocampus 1 0.048 (0.004)
RheuArth Brain_Hippocampus All 0.053 (0.004)
RheuArth Brain_Hypothalamus 1e.06 0.053 (0.004)
RheuArth Brain_Hypothalamus 1e.05 0.052 (0.004)
RheuArth Brain_Hypothalamus 1e.04 0.053 (0.004)
RheuArth Brain_Hypothalamus 0.001 0.053 (0.004)
RheuArth Brain_Hypothalamus 0.01 0.054 (0.004)
RheuArth Brain_Hypothalamus 0.05 0.051 (0.004)
RheuArth Brain_Hypothalamus 0.1 0.052 (0.004)
RheuArth Brain_Hypothalamus 0.5 0.048 (0.004)
RheuArth Brain_Hypothalamus 1 0.047 (0.004)
RheuArth Brain_Hypothalamus All 0.06 (0.004)
RheuArth Brain_Nucleus_accumbens_basal_ganglia 1e.06 0.077 (0.004)
RheuArth Brain_Nucleus_accumbens_basal_ganglia 1e.05 0.075 (0.004)
RheuArth Brain_Nucleus_accumbens_basal_ganglia 1e.04 0.074 (0.004)
RheuArth Brain_Nucleus_accumbens_basal_ganglia 0.001 0.074 (0.004)
RheuArth Brain_Nucleus_accumbens_basal_ganglia 0.01 0.072 (0.004)
RheuArth Brain_Nucleus_accumbens_basal_ganglia 0.05 0.065 (0.004)
RheuArth Brain_Nucleus_accumbens_basal_ganglia 0.1 0.065 (0.004)
RheuArth Brain_Nucleus_accumbens_basal_ganglia 0.5 0.063 (0.004)
RheuArth Brain_Nucleus_accumbens_basal_ganglia 1 0.063 (0.004)
RheuArth Brain_Nucleus_accumbens_basal_ganglia All 0.085 (0.004)
RheuArth Brain_Putamen_basal_ganglia 1e.06 0.034 (0.004)
RheuArth Brain_Putamen_basal_ganglia 1e.05 0.033 (0.004)
RheuArth Brain_Putamen_basal_ganglia 1e.04 0.035 (0.004)
RheuArth Brain_Putamen_basal_ganglia 0.001 0.041 (0.004)
RheuArth Brain_Putamen_basal_ganglia 0.01 0.046 (0.004)
RheuArth Brain_Putamen_basal_ganglia 0.05 0.049 (0.004)
RheuArth Brain_Putamen_basal_ganglia 0.1 0.05 (0.004)
RheuArth Brain_Putamen_basal_ganglia 0.5 0.051 (0.004)
RheuArth Brain_Putamen_basal_ganglia 1 0.05 (0.004)
RheuArth Brain_Putamen_basal_ganglia All 0.052 (0.004)
RheuArth Brain_Spinal_cord_cervical_c-1 1e.06 0.029 (0.004)
RheuArth Brain_Spinal_cord_cervical_c-1 1e.05 0.029 (0.004)
RheuArth Brain_Spinal_cord_cervical_c-1 1e.04 0.029 (0.004)
RheuArth Brain_Spinal_cord_cervical_c-1 0.001 0.033 (0.004)
RheuArth Brain_Spinal_cord_cervical_c-1 0.01 0.037 (0.004)
RheuArth Brain_Spinal_cord_cervical_c-1 0.05 0.043 (0.004)
RheuArth Brain_Spinal_cord_cervical_c-1 0.1 0.041 (0.004)
RheuArth Brain_Spinal_cord_cervical_c-1 0.5 0.039 (0.004)
RheuArth Brain_Spinal_cord_cervical_c-1 1 0.038 (0.004)
RheuArth Brain_Spinal_cord_cervical_c-1 All 0.042 (0.004)
RheuArth Brain_Substantia_nigra 1e.06 0.076 (0.004)
RheuArth Brain_Substantia_nigra 1e.05 0.076 (0.004)
RheuArth Brain_Substantia_nigra 1e.04 0.074 (0.004)
RheuArth Brain_Substantia_nigra 0.001 0.074 (0.004)
RheuArth Brain_Substantia_nigra 0.01 0.074 (0.004)
RheuArth Brain_Substantia_nigra 0.05 0.075 (0.004)
RheuArth Brain_Substantia_nigra 0.1 0.073 (0.004)
RheuArth Brain_Substantia_nigra 0.5 0.068 (0.004)
RheuArth Brain_Substantia_nigra 1 0.068 (0.004)
RheuArth Brain_Substantia_nigra All 0.084 (0.004)
RheuArth Breast_Mammary_Tissue 1e.06 0.058 (0.004)
RheuArth Breast_Mammary_Tissue 1e.05 0.06 (0.004)
RheuArth Breast_Mammary_Tissue 1e.04 0.064 (0.004)
RheuArth Breast_Mammary_Tissue 0.001 0.068 (0.004)
RheuArth Breast_Mammary_Tissue 0.01 0.07 (0.004)
RheuArth Breast_Mammary_Tissue 0.05 0.067 (0.004)
RheuArth Breast_Mammary_Tissue 0.1 0.064 (0.004)
RheuArth Breast_Mammary_Tissue 0.5 0.065 (0.004)
RheuArth Breast_Mammary_Tissue 1 0.065 (0.004)
RheuArth Breast_Mammary_Tissue All 0.078 (0.004)
RheuArth Cells_EBV-transformed_lymphocytes 1e.06 0.059 (0.004)
RheuArth Cells_EBV-transformed_lymphocytes 1e.05 0.059 (0.004)
RheuArth Cells_EBV-transformed_lymphocytes 1e.04 0.063 (0.004)
RheuArth Cells_EBV-transformed_lymphocytes 0.001 0.065 (0.004)
RheuArth Cells_EBV-transformed_lymphocytes 0.01 0.066 (0.004)
RheuArth Cells_EBV-transformed_lymphocytes 0.05 0.064 (0.004)
RheuArth Cells_EBV-transformed_lymphocytes 0.1 0.064 (0.004)
RheuArth Cells_EBV-transformed_lymphocytes 0.5 0.06 (0.004)
RheuArth Cells_EBV-transformed_lymphocytes 1 0.059 (0.004)
RheuArth Cells_EBV-transformed_lymphocytes All 0.071 (0.004)
RheuArth Cells_Transformed_fibroblasts 1e.06 0.071 (0.004)
RheuArth Cells_Transformed_fibroblasts 1e.05 0.072 (0.004)
RheuArth Cells_Transformed_fibroblasts 1e.04 0.073 (0.004)
RheuArth Cells_Transformed_fibroblasts 0.001 0.076 (0.004)
RheuArth Cells_Transformed_fibroblasts 0.01 0.076 (0.004)
RheuArth Cells_Transformed_fibroblasts 0.05 0.074 (0.004)
RheuArth Cells_Transformed_fibroblasts 0.1 0.072 (0.004)
RheuArth Cells_Transformed_fibroblasts 0.5 0.07 (0.004)
RheuArth Cells_Transformed_fibroblasts 1 0.069 (0.004)
RheuArth Cells_Transformed_fibroblasts All 0.086 (0.004)
RheuArth CMC.BRAIN.RNASEQ 1e.06 0.043 (0.004)
RheuArth CMC.BRAIN.RNASEQ 1e.05 0.046 (0.004)
RheuArth CMC.BRAIN.RNASEQ 1e.04 0.05 (0.004)
RheuArth CMC.BRAIN.RNASEQ 0.001 0.054 (0.004)
RheuArth CMC.BRAIN.RNASEQ 0.01 0.059 (0.004)
RheuArth CMC.BRAIN.RNASEQ 0.05 0.064 (0.004)
RheuArth CMC.BRAIN.RNASEQ 0.1 0.065 (0.004)
RheuArth CMC.BRAIN.RNASEQ 0.5 0.069 (0.004)
RheuArth CMC.BRAIN.RNASEQ 1 0.069 (0.004)
RheuArth CMC.BRAIN.RNASEQ All 0.073 (0.004)
RheuArth CMC.BRAIN.RNASEQ_SPLICING 1e.06 0.037 (0.004)
RheuArth CMC.BRAIN.RNASEQ_SPLICING 1e.05 0.037 (0.004)
RheuArth CMC.BRAIN.RNASEQ_SPLICING 1e.04 0.04 (0.004)
RheuArth CMC.BRAIN.RNASEQ_SPLICING 0.001 0.043 (0.004)
RheuArth CMC.BRAIN.RNASEQ_SPLICING 0.01 0.043 (0.004)
RheuArth CMC.BRAIN.RNASEQ_SPLICING 0.05 0.044 (0.004)
RheuArth CMC.BRAIN.RNASEQ_SPLICING 0.1 0.047 (0.004)
RheuArth CMC.BRAIN.RNASEQ_SPLICING 0.5 0.047 (0.004)
RheuArth CMC.BRAIN.RNASEQ_SPLICING 1 0.046 (0.004)
RheuArth CMC.BRAIN.RNASEQ_SPLICING All 0.056 (0.004)
RheuArth Colon_Sigmoid 1e.06 0.064 (0.004)
RheuArth Colon_Sigmoid 1e.05 0.065 (0.004)
RheuArth Colon_Sigmoid 1e.04 0.069 (0.004)
RheuArth Colon_Sigmoid 0.001 0.07 (0.004)
RheuArth Colon_Sigmoid 0.01 0.071 (0.004)
RheuArth Colon_Sigmoid 0.05 0.069 (0.004)
RheuArth Colon_Sigmoid 0.1 0.066 (0.004)
RheuArth Colon_Sigmoid 0.5 0.066 (0.004)
RheuArth Colon_Sigmoid 1 0.066 (0.004)
RheuArth Colon_Sigmoid All 0.081 (0.004)
RheuArth Colon_Transverse 1e.06 0.057 (0.004)
RheuArth Colon_Transverse 1e.05 0.059 (0.004)
RheuArth Colon_Transverse 1e.04 0.059 (0.004)
RheuArth Colon_Transverse 0.001 0.062 (0.004)
RheuArth Colon_Transverse 0.01 0.063 (0.004)
RheuArth Colon_Transverse 0.05 0.065 (0.004)
RheuArth Colon_Transverse 0.1 0.063 (0.004)
RheuArth Colon_Transverse 0.5 0.064 (0.004)
RheuArth Colon_Transverse 1 0.063 (0.004)
RheuArth Colon_Transverse All 0.074 (0.004)
RheuArth Esophagus_Gastroesophageal_Junction 1e.06 0.057 (0.004)
RheuArth Esophagus_Gastroesophageal_Junction 1e.05 0.057 (0.004)
RheuArth Esophagus_Gastroesophageal_Junction 1e.04 0.059 (0.004)
RheuArth Esophagus_Gastroesophageal_Junction 0.001 0.063 (0.004)
RheuArth Esophagus_Gastroesophageal_Junction 0.01 0.059 (0.004)
RheuArth Esophagus_Gastroesophageal_Junction 0.05 0.059 (0.004)
RheuArth Esophagus_Gastroesophageal_Junction 0.1 0.06 (0.004)
RheuArth Esophagus_Gastroesophageal_Junction 0.5 0.058 (0.004)
RheuArth Esophagus_Gastroesophageal_Junction 1 0.059 (0.004)
RheuArth Esophagus_Gastroesophageal_Junction All 0.071 (0.004)
RheuArth Esophagus_Mucosa 1e.06 0.064 (0.004)
RheuArth Esophagus_Mucosa 1e.05 0.062 (0.004)
RheuArth Esophagus_Mucosa 1e.04 0.063 (0.004)
RheuArth Esophagus_Mucosa 0.001 0.068 (0.004)
RheuArth Esophagus_Mucosa 0.01 0.069 (0.004)
RheuArth Esophagus_Mucosa 0.05 0.069 (0.004)
RheuArth Esophagus_Mucosa 0.1 0.07 (0.004)
RheuArth Esophagus_Mucosa 0.5 0.07 (0.004)
RheuArth Esophagus_Mucosa 1 0.07 (0.004)
RheuArth Esophagus_Mucosa All 0.081 (0.004)
RheuArth Esophagus_Muscularis 1e.06 0.07 (0.004)
RheuArth Esophagus_Muscularis 1e.05 0.072 (0.004)
RheuArth Esophagus_Muscularis 1e.04 0.077 (0.004)
RheuArth Esophagus_Muscularis 0.001 0.078 (0.004)
RheuArth Esophagus_Muscularis 0.01 0.075 (0.004)
RheuArth Esophagus_Muscularis 0.05 0.072 (0.004)
RheuArth Esophagus_Muscularis 0.1 0.071 (0.004)
RheuArth Esophagus_Muscularis 0.5 0.07 (0.004)
RheuArth Esophagus_Muscularis 1 0.069 (0.004)
RheuArth Esophagus_Muscularis All 0.089 (0.004)
RheuArth Heart_Atrial_Appendage 1e.06 0.076 (0.004)
RheuArth Heart_Atrial_Appendage 1e.05 0.076 (0.004)
RheuArth Heart_Atrial_Appendage 1e.04 0.074 (0.004)
RheuArth Heart_Atrial_Appendage 0.001 0.073 (0.004)
RheuArth Heart_Atrial_Appendage 0.01 0.07 (0.004)
RheuArth Heart_Atrial_Appendage 0.05 0.073 (0.004)
RheuArth Heart_Atrial_Appendage 0.1 0.073 (0.004)
RheuArth Heart_Atrial_Appendage 0.5 0.069 (0.004)
RheuArth Heart_Atrial_Appendage 1 0.07 (0.004)
RheuArth Heart_Atrial_Appendage All 0.089 (0.004)
RheuArth Heart_Left_Ventricle 1e.06 0.075 (0.004)
RheuArth Heart_Left_Ventricle 1e.05 0.076 (0.004)
RheuArth Heart_Left_Ventricle 1e.04 0.079 (0.004)
RheuArth Heart_Left_Ventricle 0.001 0.079 (0.004)
RheuArth Heart_Left_Ventricle 0.01 0.078 (0.004)
RheuArth Heart_Left_Ventricle 0.05 0.075 (0.004)
RheuArth Heart_Left_Ventricle 0.1 0.072 (0.004)
RheuArth Heart_Left_Ventricle 0.5 0.07 (0.004)
RheuArth Heart_Left_Ventricle 1 0.071 (0.004)
RheuArth Heart_Left_Ventricle All 0.089 (0.004)
RheuArth Liver 1e.06 0.071 (0.004)
RheuArth Liver 1e.05 0.073 (0.004)
RheuArth Liver 1e.04 0.07 (0.004)
RheuArth Liver 0.001 0.072 (0.004)
RheuArth Liver 0.01 0.072 (0.004)
RheuArth Liver 0.05 0.073 (0.004)
RheuArth Liver 0.1 0.071 (0.004)
RheuArth Liver 0.5 0.066 (0.004)
RheuArth Liver 1 0.066 (0.004)
RheuArth Liver All 0.081 (0.004)
RheuArth Lung 1e.06 0.074 (0.004)
RheuArth Lung 1e.05 0.073 (0.004)
RheuArth Lung 1e.04 0.073 (0.004)
RheuArth Lung 0.001 0.076 (0.004)
RheuArth Lung 0.01 0.072 (0.004)
RheuArth Lung 0.05 0.067 (0.004)
RheuArth Lung 0.1 0.066 (0.004)
RheuArth Lung 0.5 0.069 (0.004)
RheuArth Lung 1 0.069 (0.004)
RheuArth Lung All 0.089 (0.004)
RheuArth METSIM.ADIPOSE.RNASEQ 1e.06 0.083 (0.004)
RheuArth METSIM.ADIPOSE.RNASEQ 1e.05 0.081 (0.004)
RheuArth METSIM.ADIPOSE.RNASEQ 1e.04 0.081 (0.004)
RheuArth METSIM.ADIPOSE.RNASEQ 0.001 0.083 (0.004)
RheuArth METSIM.ADIPOSE.RNASEQ 0.01 0.083 (0.004)
RheuArth METSIM.ADIPOSE.RNASEQ 0.05 0.08 (0.004)
RheuArth METSIM.ADIPOSE.RNASEQ 0.1 0.081 (0.004)
RheuArth METSIM.ADIPOSE.RNASEQ 0.5 0.08 (0.004)
RheuArth METSIM.ADIPOSE.RNASEQ 1 0.079 (0.004)
RheuArth METSIM.ADIPOSE.RNASEQ All 0.095 (0.004)
RheuArth Minor_Salivary_Gland 1e.06 0.069 (0.004)
RheuArth Minor_Salivary_Gland 1e.05 0.07 (0.004)
RheuArth Minor_Salivary_Gland 1e.04 0.071 (0.004)
RheuArth Minor_Salivary_Gland 0.001 0.071 (0.004)
RheuArth Minor_Salivary_Gland 0.01 0.069 (0.004)
RheuArth Minor_Salivary_Gland 0.05 0.066 (0.004)
RheuArth Minor_Salivary_Gland 0.1 0.063 (0.004)
RheuArth Minor_Salivary_Gland 0.5 0.06 (0.004)
RheuArth Minor_Salivary_Gland 1 0.059 (0.004)
RheuArth Minor_Salivary_Gland All 0.076 (0.004)
RheuArth Muscle_Skeletal 1e.06 0.063 (0.004)
RheuArth Muscle_Skeletal 1e.05 0.065 (0.004)
RheuArth Muscle_Skeletal 1e.04 0.063 (0.004)
RheuArth Muscle_Skeletal 0.001 0.068 (0.004)
RheuArth Muscle_Skeletal 0.01 0.07 (0.004)
RheuArth Muscle_Skeletal 0.05 0.071 (0.004)
RheuArth Muscle_Skeletal 0.1 0.07 (0.004)
RheuArth Muscle_Skeletal 0.5 0.072 (0.004)
RheuArth Muscle_Skeletal 1 0.072 (0.004)
RheuArth Muscle_Skeletal All 0.082 (0.004)
RheuArth Nerve_Tibial 1e.06 0.062 (0.004)
RheuArth Nerve_Tibial 1e.05 0.063 (0.004)
RheuArth Nerve_Tibial 1e.04 0.065 (0.004)
RheuArth Nerve_Tibial 0.001 0.069 (0.004)
RheuArth Nerve_Tibial 0.01 0.068 (0.004)
RheuArth Nerve_Tibial 0.05 0.071 (0.004)
RheuArth Nerve_Tibial 0.1 0.069 (0.004)
RheuArth Nerve_Tibial 0.5 0.067 (0.004)
RheuArth Nerve_Tibial 1 0.067 (0.004)
RheuArth Nerve_Tibial All 0.083 (0.004)
RheuArth NTR.BLOOD.RNAARR 1e.06 0.042 (0.004)
RheuArth NTR.BLOOD.RNAARR 1e.05 0.049 (0.004)
RheuArth NTR.BLOOD.RNAARR 1e.04 0.055 (0.004)
RheuArth NTR.BLOOD.RNAARR 0.001 0.058 (0.004)
RheuArth NTR.BLOOD.RNAARR 0.01 0.061 (0.004)
RheuArth NTR.BLOOD.RNAARR 0.05 0.063 (0.004)
RheuArth NTR.BLOOD.RNAARR 0.1 0.064 (0.004)
RheuArth NTR.BLOOD.RNAARR 0.5 0.069 (0.004)
RheuArth NTR.BLOOD.RNAARR 1 0.07 (0.004)
RheuArth NTR.BLOOD.RNAARR All 0.073 (0.004)
RheuArth Ovary 1e.06 0.066 (0.004)
RheuArth Ovary 1e.05 0.066 (0.004)
RheuArth Ovary 1e.04 0.067 (0.004)
RheuArth Ovary 0.001 0.069 (0.004)
RheuArth Ovary 0.01 0.068 (0.004)
RheuArth Ovary 0.05 0.068 (0.004)
RheuArth Ovary 0.1 0.064 (0.004)
RheuArth Ovary 0.5 0.062 (0.004)
RheuArth Ovary 1 0.061 (0.004)
RheuArth Ovary All 0.077 (0.004)
RheuArth Pancreas 1e.06 0.061 (0.004)
RheuArth Pancreas 1e.05 0.059 (0.004)
RheuArth Pancreas 1e.04 0.064 (0.004)
RheuArth Pancreas 0.001 0.066 (0.004)
RheuArth Pancreas 0.01 0.068 (0.004)
RheuArth Pancreas 0.05 0.072 (0.004)
RheuArth Pancreas 0.1 0.07 (0.004)
RheuArth Pancreas 0.5 0.069 (0.004)
RheuArth Pancreas 1 0.07 (0.004)
RheuArth Pancreas All 0.078 (0.004)
RheuArth Pituitary 1e.06 0.061 (0.004)
RheuArth Pituitary 1e.05 0.063 (0.004)
RheuArth Pituitary 1e.04 0.061 (0.004)
RheuArth Pituitary 0.001 0.065 (0.004)
RheuArth Pituitary 0.01 0.065 (0.004)
RheuArth Pituitary 0.05 0.064 (0.004)
RheuArth Pituitary 0.1 0.066 (0.004)
RheuArth Pituitary 0.5 0.065 (0.004)
RheuArth Pituitary 1 0.064 (0.004)
RheuArth Pituitary All 0.077 (0.004)
RheuArth Prostate 1e.06 0.03 (0.004)
RheuArth Prostate 1e.05 0.032 (0.004)
RheuArth Prostate 1e.04 0.034 (0.004)
RheuArth Prostate 0.001 0.04 (0.004)
RheuArth Prostate 0.01 0.042 (0.004)
RheuArth Prostate 0.05 0.043 (0.004)
RheuArth Prostate 0.1 0.044 (0.004)
RheuArth Prostate 0.5 0.049 (0.004)
RheuArth Prostate 1 0.047 (0.004)
RheuArth Prostate All 0.05 (0.004)
RheuArth Skin_Not_Sun_Exposed_Suprapubic 1e.06 0.04 (0.004)
RheuArth Skin_Not_Sun_Exposed_Suprapubic 1e.05 0.041 (0.004)
RheuArth Skin_Not_Sun_Exposed_Suprapubic 1e.04 0.044 (0.004)
RheuArth Skin_Not_Sun_Exposed_Suprapubic 0.001 0.049 (0.004)
RheuArth Skin_Not_Sun_Exposed_Suprapubic 0.01 0.055 (0.004)
RheuArth Skin_Not_Sun_Exposed_Suprapubic 0.05 0.055 (0.004)
RheuArth Skin_Not_Sun_Exposed_Suprapubic 0.1 0.055 (0.004)
RheuArth Skin_Not_Sun_Exposed_Suprapubic 0.5 0.056 (0.004)
RheuArth Skin_Not_Sun_Exposed_Suprapubic 1 0.056 (0.004)
RheuArth Skin_Not_Sun_Exposed_Suprapubic All 0.062 (0.004)
RheuArth Skin_Sun_Exposed_Lower_leg 1e.06 0.048 (0.004)
RheuArth Skin_Sun_Exposed_Lower_leg 1e.05 0.049 (0.004)
RheuArth Skin_Sun_Exposed_Lower_leg 1e.04 0.05 (0.004)
RheuArth Skin_Sun_Exposed_Lower_leg 0.001 0.054 (0.004)
RheuArth Skin_Sun_Exposed_Lower_leg 0.01 0.059 (0.004)
RheuArth Skin_Sun_Exposed_Lower_leg 0.05 0.06 (0.004)
RheuArth Skin_Sun_Exposed_Lower_leg 0.1 0.058 (0.004)
RheuArth Skin_Sun_Exposed_Lower_leg 0.5 0.059 (0.004)
RheuArth Skin_Sun_Exposed_Lower_leg 1 0.058 (0.004)
RheuArth Skin_Sun_Exposed_Lower_leg All 0.067 (0.004)
RheuArth Small_Intestine_Terminal_Ileum 1e.06 0.067 (0.004)
RheuArth Small_Intestine_Terminal_Ileum 1e.05 0.066 (0.004)
RheuArth Small_Intestine_Terminal_Ileum 1e.04 0.066 (0.004)
RheuArth Small_Intestine_Terminal_Ileum 0.001 0.069 (0.004)
RheuArth Small_Intestine_Terminal_Ileum 0.01 0.066 (0.004)
RheuArth Small_Intestine_Terminal_Ileum 0.05 0.063 (0.004)
RheuArth Small_Intestine_Terminal_Ileum 0.1 0.061 (0.004)
RheuArth Small_Intestine_Terminal_Ileum 0.5 0.059 (0.004)
RheuArth Small_Intestine_Terminal_Ileum 1 0.058 (0.004)
RheuArth Small_Intestine_Terminal_Ileum All 0.074 (0.004)
RheuArth Spleen 1e.06 0.068 (0.004)
RheuArth Spleen 1e.05 0.07 (0.004)
RheuArth Spleen 1e.04 0.071 (0.004)
RheuArth Spleen 0.001 0.073 (0.004)
RheuArth Spleen 0.01 0.071 (0.004)
RheuArth Spleen 0.05 0.074 (0.004)
RheuArth Spleen 0.1 0.074 (0.004)
RheuArth Spleen 0.5 0.068 (0.004)
RheuArth Spleen 1 0.068 (0.004)
RheuArth Spleen All 0.082 (0.004)
RheuArth Stomach 1e.06 0.076 (0.004)
RheuArth Stomach 1e.05 0.078 (0.004)
RheuArth Stomach 1e.04 0.075 (0.004)
RheuArth Stomach 0.001 0.077 (0.004)
RheuArth Stomach 0.01 0.073 (0.004)
RheuArth Stomach 0.05 0.071 (0.004)
RheuArth Stomach 0.1 0.071 (0.004)
RheuArth Stomach 0.5 0.065 (0.004)
RheuArth Stomach 1 0.065 (0.004)
RheuArth Stomach All 0.087 (0.004)
RheuArth Testis 1e.06 0.059 (0.004)
RheuArth Testis 1e.05 0.06 (0.004)
RheuArth Testis 1e.04 0.06 (0.004)
RheuArth Testis 0.001 0.065 (0.004)
RheuArth Testis 0.01 0.069 (0.004)
RheuArth Testis 0.05 0.067 (0.004)
RheuArth Testis 0.1 0.067 (0.004)
RheuArth Testis 0.5 0.067 (0.004)
RheuArth Testis 1 0.066 (0.004)
RheuArth Testis All 0.076 (0.004)
RheuArth Thyroid 1e.06 0.068 (0.004)
RheuArth Thyroid 1e.05 0.07 (0.004)
RheuArth Thyroid 1e.04 0.071 (0.004)
RheuArth Thyroid 0.001 0.074 (0.004)
RheuArth Thyroid 0.01 0.069 (0.004)
RheuArth Thyroid 0.05 0.07 (0.004)
RheuArth Thyroid 0.1 0.07 (0.004)
RheuArth Thyroid 0.5 0.066 (0.004)
RheuArth Thyroid 1 0.067 (0.004)
RheuArth Thyroid All 0.086 (0.004)
RheuArth Uterus 1e.06 0.064 (0.004)
RheuArth Uterus 1e.05 0.066 (0.004)
RheuArth Uterus 1e.04 0.067 (0.004)
RheuArth Uterus 0.001 0.066 (0.004)
RheuArth Uterus 0.01 0.067 (0.004)
RheuArth Uterus 0.05 0.065 (0.004)
RheuArth Uterus 0.1 0.062 (0.004)
RheuArth Uterus 0.5 0.062 (0.004)
RheuArth Uterus 1 0.06 (0.004)
RheuArth Uterus All 0.076 (0.004)
RheuArth Vagina 1e.06 0.074 (0.004)
RheuArth Vagina 1e.05 0.074 (0.004)
RheuArth Vagina 1e.04 0.076 (0.004)
RheuArth Vagina 0.001 0.075 (0.004)
RheuArth Vagina 0.01 0.068 (0.004)
RheuArth Vagina 0.05 0.067 (0.004)
RheuArth Vagina 0.1 0.065 (0.004)
RheuArth Vagina 0.5 0.062 (0.004)
RheuArth Vagina 1 0.061 (0.004)
RheuArth Vagina All 0.08 (0.004)
RheuArth Whole_Blood 1e.06 0.06 (0.004)
RheuArth Whole_Blood 1e.05 0.059 (0.004)
RheuArth Whole_Blood 1e.04 0.064 (0.004)
RheuArth Whole_Blood 0.001 0.068 (0.004)
RheuArth Whole_Blood 0.01 0.068 (0.004)
RheuArth Whole_Blood 0.05 0.068 (0.004)
RheuArth Whole_Blood 0.1 0.067 (0.004)
RheuArth Whole_Blood 0.5 0.071 (0.004)
RheuArth Whole_Blood 1 0.07 (0.004)
RheuArth Whole_Blood All 0.081 (0.004)
RheuArth YFS.BLOOD.RNAARR 1e.06 0.074 (0.004)
RheuArth YFS.BLOOD.RNAARR 1e.05 0.075 (0.004)
RheuArth YFS.BLOOD.RNAARR 1e.04 0.079 (0.004)
RheuArth YFS.BLOOD.RNAARR 0.001 0.076 (0.004)
RheuArth YFS.BLOOD.RNAARR 0.01 0.079 (0.004)
RheuArth YFS.BLOOD.RNAARR 0.05 0.079 (0.004)
RheuArth YFS.BLOOD.RNAARR 0.1 0.074 (0.004)
RheuArth YFS.BLOOD.RNAARR 0.5 0.073 (0.004)
RheuArth YFS.BLOOD.RNAARR 1 0.074 (0.004)
RheuArth YFS.BLOOD.RNAARR All 0.091 (0.004)
Correlation between GeRS model predictions and observed values in UKBB
Phenotype Weight Model R (SE) P
Depression Adipose_Subcutaneous All 0.05 (0.004) 0e+00
Depression Adipose_Visceral_Omentum All 0.043 (0.004) 0e+00
Depression Adrenal_Gland All 0.049 (0.004) 0e+00
Depression Artery_Aorta All 0.051 (0.004) 0e+00
Depression Artery_Coronary 1 0.036 (0.004) 0e+00
Depression Artery_Tibial All 0.05 (0.004) 0e+00
Depression Brain_Amygdala 0.05 0.034 (0.004) 0e+00
Depression Brain_Anterior_cingulate_cortex_BA24 All 0.04 (0.004) 0e+00
Depression Brain_Caudate_basal_ganglia All 0.041 (0.004) 0e+00
Depression Brain_Cerebellar_Hemisphere All 0.047 (0.004) 0e+00
Depression Brain_Cerebellum All 0.044 (0.004) 0e+00
Depression Brain_Cortex All 0.048 (0.004) 0e+00
Depression Brain_Frontal_Cortex_BA9 All 0.038 (0.004) 0e+00
Depression Brain_Hippocampus All 0.037 (0.004) 0e+00
Depression Brain_Hypothalamus All 0.037 (0.004) 0e+00
Depression Brain_Nucleus_accumbens_basal_ganglia All 0.039 (0.004) 0e+00
Depression Brain_Putamen_basal_ganglia All 0.04 (0.004) 0e+00
Depression Brain_Spinal_cord_cervical_c-1 All 0.036 (0.004) 0e+00
Depression Brain_Substantia_nigra All 0.033 (0.004) 0e+00
Depression Breast_Mammary_Tissue All 0.043 (0.004) 0e+00
Depression Cells_EBV-transformed_lymphocytes 0.5 0.041 (0.004) 0e+00
Depression Cells_Transformed_fibroblasts 1 0.047 (0.004) 0e+00
Depression CMC.BRAIN.RNASEQ 0.5 0.052 (0.004) 0e+00
Depression CMC.BRAIN.RNASEQ_SPLICING All 0.048 (0.004) 0e+00
Depression Colon_Sigmoid All 0.044 (0.004) 0e+00
Depression Colon_Transverse All 0.05 (0.004) 0e+00
Depression Esophagus_Gastroesophageal_Junction All 0.043 (0.004) 0e+00
Depression Esophagus_Mucosa All 0.05 (0.004) 0e+00
Depression Esophagus_Muscularis All 0.053 (0.004) 0e+00
Depression Heart_Atrial_Appendage All 0.045 (0.004) 0e+00
Depression Heart_Left_Ventricle 0.5 0.043 (0.004) 0e+00
Depression Liver 1 0.034 (0.004) 0e+00
Depression Lung All 0.052 (0.004) 0e+00
Depression METSIM.ADIPOSE.RNASEQ All 0.043 (0.004) 0e+00
Depression Minor_Salivary_Gland All 0.03 (0.004) 0e+00
Depression Muscle_Skeletal 1 0.041 (0.004) 0e+00
Depression Nerve_Tibial All 0.052 (0.004) 0e+00
Depression NTR.BLOOD.RNAARR 1 0.037 (0.004) 0e+00
Depression Ovary All 0.04 (0.004) 0e+00
Depression Pancreas All 0.048 (0.004) 0e+00
Depression Pituitary 1 0.037 (0.004) 0e+00
Depression Prostate All 0.031 (0.004) 0e+00
Depression Skin_Not_Sun_Exposed_Suprapubic All 0.051 (0.004) 0e+00
Depression Skin_Sun_Exposed_Lower_leg All 0.049 (0.004) 0e+00
Depression Small_Intestine_Terminal_Ileum 1 0.04 (0.004) 0e+00
Depression Spleen All 0.043 (0.004) 0e+00
Depression Stomach All 0.044 (0.004) 0e+00
Depression Testis All 0.054 (0.004) 0e+00
Depression Thyroid All 0.058 (0.004) 0e+00
Depression Uterus All 0.032 (0.004) 0e+00
Depression Vagina All 0.033 (0.004) 0e+00
Depression Whole_Blood All 0.049 (0.004) 0e+00
Depression YFS.BLOOD.RNAARR 1 0.043 (0.004) 0e+00
Intelligence Adipose_Subcutaneous All 0.056 (0.004) 0e+00
Intelligence Adipose_Visceral_Omentum All 0.048 (0.004) 0e+00
Intelligence Adrenal_Gland All 0.046 (0.004) 0e+00
Intelligence Artery_Aorta All 0.045 (0.004) 0e+00
Intelligence Artery_Coronary All 0.041 (0.004) 0e+00
Intelligence Artery_Tibial All 0.055 (0.004) 0e+00
Intelligence Brain_Amygdala All 0.04 (0.004) 0e+00
Intelligence Brain_Anterior_cingulate_cortex_BA24 All 0.041 (0.004) 0e+00
Intelligence Brain_Caudate_basal_ganglia All 0.044 (0.004) 0e+00
Intelligence Brain_Cerebellar_Hemisphere All 0.045 (0.004) 0e+00
Intelligence Brain_Cerebellum All 0.047 (0.004) 0e+00
Intelligence Brain_Cortex All 0.041 (0.004) 0e+00
Intelligence Brain_Frontal_Cortex_BA9 All 0.038 (0.004) 0e+00
Intelligence Brain_Hippocampus All 0.037 (0.004) 0e+00
Intelligence Brain_Hypothalamus All 0.037 (0.004) 0e+00
Intelligence Brain_Nucleus_accumbens_basal_ganglia All 0.04 (0.004) 0e+00
Intelligence Brain_Putamen_basal_ganglia All 0.043 (0.004) 0e+00
Intelligence Brain_Spinal_cord_cervical_c-1 All 0.034 (0.004) 0e+00
Intelligence Brain_Substantia_nigra All 0.033 (0.004) 0e+00
Intelligence Breast_Mammary_Tissue All 0.045 (0.004) 0e+00
Intelligence Cells_EBV-transformed_lymphocytes 0.05 0.036 (0.004) 0e+00
Intelligence Cells_Transformed_fibroblasts All 0.049 (0.004) 0e+00
Intelligence CMC.BRAIN.RNASEQ All 0.048 (0.004) 0e+00
Intelligence CMC.BRAIN.RNASEQ_SPLICING All 0.046 (0.004) 0e+00
Intelligence Colon_Sigmoid All 0.045 (0.004) 0e+00
Intelligence Colon_Transverse All 0.046 (0.004) 0e+00
Intelligence Esophagus_Gastroesophageal_Junction All 0.046 (0.004) 0e+00
Intelligence Esophagus_Mucosa All 0.044 (0.004) 0e+00
Intelligence Esophagus_Muscularis All 0.053 (0.004) 0e+00
Intelligence Heart_Atrial_Appendage All 0.051 (0.004) 0e+00
Intelligence Heart_Left_Ventricle 0.5 0.044 (0.004) 0e+00
Intelligence Liver All 0.04 (0.004) 0e+00
Intelligence Lung All 0.05 (0.004) 0e+00
Intelligence METSIM.ADIPOSE.RNASEQ All 0.049 (0.004) 0e+00
Intelligence Minor_Salivary_Gland All 0.035 (0.004) 0e+00
Intelligence Muscle_Skeletal 0.5 0.054 (0.004) 0e+00
Intelligence Nerve_Tibial All 0.052 (0.004) 0e+00
Intelligence NTR.BLOOD.RNAARR All 0.038 (0.004) 0e+00
Intelligence Ovary 0.5 0.039 (0.004) 0e+00
Intelligence Pancreas All 0.049 (0.004) 0e+00
Intelligence Pituitary All 0.043 (0.004) 0e+00
Intelligence Prostate All 0.042 (0.004) 0e+00
Intelligence Skin_Not_Sun_Exposed_Suprapubic All 0.051 (0.004) 0e+00
Intelligence Skin_Sun_Exposed_Lower_leg All 0.046 (0.004) 0e+00
Intelligence Small_Intestine_Terminal_Ileum All 0.035 (0.004) 0e+00
Intelligence Spleen All 0.047 (0.004) 0e+00
Intelligence Stomach All 0.048 (0.004) 0e+00
Intelligence Testis All 0.051 (0.004) 0e+00
Intelligence Thyroid All 0.052 (0.004) 0e+00
Intelligence Uterus All 0.04 (0.004) 0e+00
Intelligence Vagina All 0.039 (0.004) 0e+00
Intelligence Whole_Blood All 0.043 (0.004) 0e+00
Intelligence YFS.BLOOD.RNAARR All 0.049 (0.004) 0e+00
BMI Adipose_Subcutaneous All 0.128 (0.004) 0e+00
BMI Adipose_Visceral_Omentum All 0.119 (0.004) 0e+00
BMI Adrenal_Gland All 0.103 (0.004) 0e+00
BMI Artery_Aorta All 0.116 (0.004) 0e+00
BMI Artery_Coronary All 0.103 (0.004) 0e+00
BMI Artery_Tibial All 0.13 (0.004) 0e+00
BMI Brain_Amygdala All 0.083 (0.004) 0e+00
BMI Brain_Anterior_cingulate_cortex_BA24 All 0.1 (0.004) 0e+00
BMI Brain_Caudate_basal_ganglia All 0.102 (0.004) 0e+00
BMI Brain_Cerebellar_Hemisphere All 0.105 (0.004) 0e+00
BMI Brain_Cerebellum All 0.11 (0.004) 0e+00
BMI Brain_Cortex All 0.102 (0.004) 0e+00
BMI Brain_Frontal_Cortex_BA9 All 0.098 (0.004) 0e+00
BMI Brain_Hippocampus All 0.084 (0.004) 0e+00
BMI Brain_Hypothalamus All 0.082 (0.004) 0e+00
BMI Brain_Nucleus_accumbens_basal_ganglia All 0.095 (0.004) 0e+00
BMI Brain_Putamen_basal_ganglia All 0.096 (0.004) 0e+00
BMI Brain_Spinal_cord_cervical_c-1 1 0.09 (0.004) 0e+00
BMI Brain_Substantia_nigra All 0.083 (0.004) 0e+00
BMI Breast_Mammary_Tissue All 0.111 (0.004) 0e+00
BMI Cells_EBV-transformed_lymphocytes 1 0.097 (0.004) 0e+00
BMI Cells_Transformed_fibroblasts All 0.124 (0.004) 0e+00
BMI CMC.BRAIN.RNASEQ All 0.126 (0.004) 0e+00
BMI CMC.BRAIN.RNASEQ_SPLICING All 0.109 (0.004) 0e+00
BMI Colon_Sigmoid All 0.095 (0.004) 0e+00
BMI Colon_Transverse All 0.102 (0.004) 0e+00
BMI Esophagus_Gastroesophageal_Junction All 0.102 (0.004) 0e+00
BMI Esophagus_Mucosa 1 0.119 (0.004) 0e+00
BMI Esophagus_Muscularis All 0.12 (0.004) 0e+00
BMI Heart_Atrial_Appendage All 0.115 (0.004) 0e+00
BMI Heart_Left_Ventricle 1 0.112 (0.004) 0e+00
BMI Liver 0.5 0.091 (0.004) 0e+00
BMI Lung All 0.12 (0.004) 0e+00
BMI METSIM.ADIPOSE.RNASEQ All 0.109 (0.004) 0e+00
BMI Minor_Salivary_Gland 1 0.086 (0.004) 0e+00
BMI Muscle_Skeletal All 0.12 (0.004) 0e+00
BMI Nerve_Tibial All 0.127 (0.004) 0e+00
BMI NTR.BLOOD.RNAARR All 0.094 (0.004) 0e+00
BMI Ovary All 0.084 (0.004) 0e+00
BMI Pancreas All 0.116 (0.004) 0e+00
BMI Pituitary All 0.099 (0.004) 0e+00
BMI Prostate All 0.093 (0.004) 0e+00
BMI Skin_Not_Sun_Exposed_Suprapubic All 0.118 (0.004) 0e+00
BMI Skin_Sun_Exposed_Lower_leg All 0.12 (0.004) 0e+00
BMI Small_Intestine_Terminal_Ileum All 0.095 (0.004) 0e+00
BMI Spleen All 0.108 (0.004) 0e+00
BMI Stomach All 0.111 (0.004) 0e+00
BMI Testis All 0.125 (0.004) 0e+00
BMI Thyroid All 0.128 (0.004) 0e+00
BMI Uterus All 0.083 (0.004) 0e+00
BMI Vagina All 0.088 (0.004) 0e+00
BMI Whole_Blood All 0.11 (0.004) 0e+00
BMI YFS.BLOOD.RNAARR 1 0.108 (0.004) 0e+00
Height Adipose_Subcutaneous All 0.179 (0.004) 0e+00
Height Adipose_Visceral_Omentum All 0.164 (0.004) 0e+00
Height Adrenal_Gland All 0.148 (0.004) 0e+00
Height Artery_Aorta 1 0.161 (0.004) 0e+00
Height Artery_Coronary All 0.136 (0.004) 0e+00
Height Artery_Tibial All 0.18 (0.004) 0e+00
Height Brain_Amygdala All 0.114 (0.004) 0e+00
Height Brain_Anterior_cingulate_cortex_BA24 All 0.126 (0.004) 0e+00
Height Brain_Caudate_basal_ganglia All 0.132 (0.004) 0e+00
Height Brain_Cerebellar_Hemisphere All 0.137 (0.004) 0e+00
Height Brain_Cerebellum All 0.146 (0.004) 0e+00
Height Brain_Cortex All 0.138 (0.004) 0e+00
Height Brain_Frontal_Cortex_BA9 All 0.135 (0.004) 0e+00
Height Brain_Hippocampus 1 0.113 (0.004) 0e+00
Height Brain_Hypothalamus 0.5 0.113 (0.004) 0e+00
Height Brain_Nucleus_accumbens_basal_ganglia All 0.125 (0.004) 0e+00
Height Brain_Putamen_basal_ganglia 1 0.123 (0.004) 0e+00
Height Brain_Spinal_cord_cervical_c-1 All 0.113 (0.004) 0e+00
Height Brain_Substantia_nigra All 0.101 (0.004) 0e+00
Height Breast_Mammary_Tissue All 0.152 (0.004) 0e+00
Height Cells_EBV-transformed_lymphocytes 0.5 0.13 (0.004) 0e+00
Height Cells_Transformed_fibroblasts 1 0.17 (0.004) 0e+00
Height CMC.BRAIN.RNASEQ 0.5 0.165 (0.004) 0e+00
Height CMC.BRAIN.RNASEQ_SPLICING All 0.147 (0.004) 0e+00
Height Colon_Sigmoid All 0.142 (0.004) 0e+00
Height Colon_Transverse All 0.149 (0.004) 0e+00
Height Esophagus_Gastroesophageal_Junction 1 0.15 (0.004) 0e+00
Height Esophagus_Mucosa 0.5 0.176 (0.004) 0e+00
Height Esophagus_Muscularis 0.5 0.17 (0.004) 0e+00
Height Heart_Atrial_Appendage 0.5 0.156 (0.004) 0e+00
Height Heart_Left_Ventricle 0.5 0.148 (0.004) 0e+00
Height Liver All 0.134 (0.004) 0e+00
Height Lung All 0.169 (0.004) 0e+00
Height METSIM.ADIPOSE.RNASEQ 0.5 0.152 (0.004) 0e+00
Height Minor_Salivary_Gland All 0.109 (0.004) 0e+00
Height Muscle_Skeletal 0.5 0.169 (0.004) 0e+00
Height Nerve_Tibial All 0.182 (0.004) 0e+00
Height NTR.BLOOD.RNAARR All 0.139 (0.004) 0e+00
Height Ovary All 0.12 (0.004) 0e+00
Height Pancreas All 0.155 (0.004) 0e+00
Height Pituitary All 0.143 (0.004) 0e+00
Height Prostate 0.5 0.114 (0.004) 0e+00
Height Skin_Not_Sun_Exposed_Suprapubic 1 0.168 (0.004) 0e+00
Height Skin_Sun_Exposed_Lower_leg All 0.175 (0.004) 0e+00
Height Small_Intestine_Terminal_Ileum All 0.126 (0.004) 0e+00
Height Spleen All 0.145 (0.004) 0e+00
Height Stomach All 0.151 (0.004) 0e+00
Height Testis All 0.176 (0.004) 0e+00
Height Thyroid 0.5 0.181 (0.004) 0e+00
Height Uterus 1 0.107 (0.004) 0e+00
Height Vagina All 0.109 (0.004) 0e+00
Height Whole_Blood All 0.162 (0.004) 0e+00
Height YFS.BLOOD.RNAARR All 0.164 (0.004) 0e+00
T2D Adipose_Subcutaneous All 0.11 (0.004) 0e+00
T2D Adipose_Visceral_Omentum All 0.088 (0.004) 0e+00
T2D Adrenal_Gland All 0.082 (0.004) 0e+00
T2D Artery_Aorta All 0.101 (0.004) 0e+00
T2D Artery_Coronary All 0.069 (0.004) 0e+00
T2D Artery_Tibial All 0.107 (0.004) 0e+00
T2D Brain_Amygdala All 0.067 (0.004) 0e+00
T2D Brain_Anterior_cingulate_cortex_BA24 All 0.069 (0.004) 0e+00
T2D Brain_Caudate_basal_ganglia All 0.07 (0.004) 0e+00
T2D Brain_Cerebellar_Hemisphere All 0.081 (0.004) 0e+00
T2D Brain_Cerebellum All 0.084 (0.004) 0e+00
T2D Brain_Cortex All 0.07 (0.004) 0e+00
T2D Brain_Frontal_Cortex_BA9 All 0.071 (0.004) 0e+00
T2D Brain_Hippocampus All 0.062 (0.004) 0e+00
T2D Brain_Hypothalamus All 0.061 (0.004) 0e+00
T2D Brain_Nucleus_accumbens_basal_ganglia All 0.072 (0.004) 0e+00
T2D Brain_Putamen_basal_ganglia All 0.067 (0.004) 0e+00
T2D Brain_Spinal_cord_cervical_c-1 All 0.061 (0.004) 0e+00
T2D Brain_Substantia_nigra All 0.049 (0.004) 0e+00
T2D Breast_Mammary_Tissue All 0.088 (0.004) 0e+00
T2D Cells_EBV-transformed_lymphocytes All 0.063 (0.004) 0e+00
T2D Cells_Transformed_fibroblasts All 0.104 (0.004) 0e+00
T2D CMC.BRAIN.RNASEQ All 0.104 (0.004) 0e+00
T2D CMC.BRAIN.RNASEQ_SPLICING All 0.084 (0.004) 0e+00
T2D Colon_Sigmoid All 0.076 (0.004) 0e+00
T2D Colon_Transverse All 0.083 (0.004) 0e+00
T2D Esophagus_Gastroesophageal_Junction All 0.085 (0.004) 0e+00
T2D Esophagus_Mucosa All 0.085 (0.004) 0e+00
T2D Esophagus_Muscularis All 0.097 (0.004) 0e+00
T2D Heart_Atrial_Appendage All 0.093 (0.004) 0e+00
T2D Heart_Left_Ventricle All 0.087 (0.004) 0e+00
T2D Liver All 0.077 (0.004) 0e+00
T2D Lung All 0.093 (0.004) 0e+00
T2D METSIM.ADIPOSE.RNASEQ All 0.087 (0.004) 0e+00
T2D Minor_Salivary_Gland All 0.055 (0.004) 0e+00
T2D Muscle_Skeletal All 0.104 (0.004) 0e+00
T2D Nerve_Tibial All 0.109 (0.004) 0e+00
T2D NTR.BLOOD.RNAARR All 0.082 (0.004) 0e+00
T2D Ovary All 0.069 (0.004) 0e+00
T2D Pancreas All 0.086 (0.004) 0e+00
T2D Pituitary All 0.076 (0.004) 0e+00
T2D Prostate All 0.059 (0.004) 0e+00
T2D Skin_Not_Sun_Exposed_Suprapubic All 0.094 (0.004) 0e+00
T2D Skin_Sun_Exposed_Lower_leg All 0.098 (0.004) 0e+00
T2D Small_Intestine_Terminal_Ileum All 0.076 (0.004) 0e+00
T2D Spleen All 0.083 (0.004) 0e+00
T2D Stomach All 0.081 (0.004) 0e+00
T2D Testis All 0.098 (0.004) 0e+00
T2D Thyroid All 0.106 (0.004) 0e+00
T2D Uterus All 0.057 (0.004) 0e+00
T2D Vagina All 0.056 (0.004) 0e+00
T2D Whole_Blood All 0.087 (0.004) 0e+00
T2D YFS.BLOOD.RNAARR All 0.086 (0.004) 0e+00
CAD Adipose_Subcutaneous All 0.076 (0.004) 0e+00
CAD Adipose_Visceral_Omentum All 0.07 (0.004) 0e+00
CAD Adrenal_Gland All 0.058 (0.004) 0e+00
CAD Artery_Aorta All 0.089 (0.004) 0e+00
CAD Artery_Coronary All 0.064 (0.004) 0e+00
CAD Artery_Tibial All 0.089 (0.004) 0e+00
CAD Brain_Amygdala 1 0.036 (0.004) 0e+00
CAD Brain_Anterior_cingulate_cortex_BA24 All 0.042 (0.004) 0e+00
CAD Brain_Caudate_basal_ganglia All 0.058 (0.004) 0e+00
CAD Brain_Cerebellar_Hemisphere All 0.057 (0.004) 0e+00
CAD Brain_Cerebellum All 0.052 (0.004) 0e+00
CAD Brain_Cortex All 0.061 (0.004) 0e+00
CAD Brain_Frontal_Cortex_BA9 All 0.047 (0.004) 0e+00
CAD Brain_Hippocampus All 0.042 (0.004) 0e+00
CAD Brain_Hypothalamus All 0.038 (0.004) 0e+00
CAD Brain_Nucleus_accumbens_basal_ganglia All 0.048 (0.004) 0e+00
CAD Brain_Putamen_basal_ganglia All 0.043 (0.004) 0e+00
CAD Brain_Spinal_cord_cervical_c-1 All 0.053 (0.004) 0e+00
CAD Brain_Substantia_nigra 0.5 0.041 (0.004) 0e+00
CAD Breast_Mammary_Tissue All 0.063 (0.004) 0e+00
CAD Cells_EBV-transformed_lymphocytes All 0.051 (0.004) 0e+00
CAD Cells_Transformed_fibroblasts All 0.084 (0.004) 0e+00
CAD CMC.BRAIN.RNASEQ All 0.081 (0.004) 0e+00
CAD CMC.BRAIN.RNASEQ_SPLICING All 0.054 (0.004) 0e+00
CAD Colon_Sigmoid All 0.061 (0.004) 0e+00
CAD Colon_Transverse All 0.064 (0.004) 0e+00
CAD Esophagus_Gastroesophageal_Junction All 0.058 (0.004) 0e+00
CAD Esophagus_Mucosa All 0.072 (0.004) 0e+00
CAD Esophagus_Muscularis All 0.069 (0.004) 0e+00
CAD Heart_Atrial_Appendage All 0.065 (0.004) 0e+00
CAD Heart_Left_Ventricle All 0.066 (0.004) 0e+00
CAD Liver All 0.051 (0.004) 0e+00
CAD Lung All 0.076 (0.004) 0e+00
CAD METSIM.ADIPOSE.RNASEQ All 0.07 (0.004) 0e+00
CAD Minor_Salivary_Gland All 0.043 (0.004) 0e+00
CAD Muscle_Skeletal All 0.085 (0.004) 0e+00
CAD Nerve_Tibial All 0.086 (0.004) 0e+00
CAD NTR.BLOOD.RNAARR All 0.063 (0.004) 0e+00
CAD Ovary All 0.054 (0.004) 0e+00
CAD Pancreas All 0.068 (0.004) 0e+00
CAD Pituitary All 0.057 (0.004) 0e+00
CAD Prostate All 0.046 (0.004) 0e+00
CAD Skin_Not_Sun_Exposed_Suprapubic All 0.072 (0.004) 0e+00
CAD Skin_Sun_Exposed_Lower_leg All 0.077 (0.004) 0e+00
CAD Small_Intestine_Terminal_Ileum All 0.048 (0.004) 0e+00
CAD Spleen All 0.064 (0.004) 0e+00
CAD Stomach 1 0.059 (0.004) 0e+00
CAD Testis All 0.073 (0.004) 0e+00
CAD Thyroid All 0.08 (0.004) 0e+00
CAD Uterus All 0.045 (0.004) 0e+00
CAD Vagina All 0.039 (0.004) 0e+00
CAD Whole_Blood All 0.074 (0.004) 0e+00
CAD YFS.BLOOD.RNAARR All 0.071 (0.004) 0e+00
IBD Adipose_Subcutaneous All 0.064 (0.004) 0e+00
IBD Adipose_Visceral_Omentum All 0.06 (0.004) 0e+00
IBD Adrenal_Gland All 0.05 (0.004) 0e+00
IBD Artery_Aorta All 0.055 (0.004) 0e+00
IBD Artery_Coronary All 0.047 (0.004) 0e+00
IBD Artery_Tibial All 0.06 (0.004) 0e+00
IBD Brain_Amygdala All 0.036 (0.004) 0e+00
IBD Brain_Anterior_cingulate_cortex_BA24 All 0.044 (0.004) 0e+00
IBD Brain_Caudate_basal_ganglia All 0.045 (0.004) 0e+00
IBD Brain_Cerebellar_Hemisphere All 0.052 (0.004) 0e+00
IBD Brain_Cerebellum All 0.057 (0.004) 0e+00
IBD Brain_Cortex All 0.051 (0.004) 0e+00
IBD Brain_Frontal_Cortex_BA9 All 0.04 (0.004) 0e+00
IBD Brain_Hippocampus All 0.042 (0.004) 0e+00
IBD Brain_Hypothalamus 0.5 0.038 (0.004) 0e+00
IBD Brain_Nucleus_accumbens_basal_ganglia All 0.048 (0.004) 0e+00
IBD Brain_Putamen_basal_ganglia All 0.042 (0.004) 0e+00
IBD Brain_Spinal_cord_cervical_c-1 All 0.032 (0.004) 0e+00
IBD Brain_Substantia_nigra All 0.034 (0.004) 0e+00
IBD Breast_Mammary_Tissue All 0.054 (0.004) 0e+00
IBD Cells_EBV-transformed_lymphocytes All 0.047 (0.004) 0e+00
IBD Cells_Transformed_fibroblasts All 0.061 (0.004) 0e+00
IBD CMC.BRAIN.RNASEQ All 0.058 (0.004) 0e+00
IBD CMC.BRAIN.RNASEQ_SPLICING All 0.047 (0.004) 0e+00
IBD Colon_Sigmoid All 0.054 (0.004) 0e+00
IBD Colon_Transverse All 0.055 (0.004) 0e+00
IBD Esophagus_Gastroesophageal_Junction 0.5 0.053 (0.004) 0e+00
IBD Esophagus_Mucosa All 0.063 (0.004) 0e+00
IBD Esophagus_Muscularis All 0.063 (0.004) 0e+00
IBD Heart_Atrial_Appendage All 0.053 (0.004) 0e+00
IBD Heart_Left_Ventricle All 0.058 (0.004) 0e+00
IBD Liver All 0.047 (0.004) 0e+00
IBD Lung All 0.063 (0.004) 0e+00
IBD METSIM.ADIPOSE.RNASEQ All 0.062 (0.004) 0e+00
IBD Minor_Salivary_Gland All 0.043 (0.004) 0e+00
IBD Muscle_Skeletal All 0.066 (0.004) 0e+00
IBD Nerve_Tibial All 0.065 (0.004) 0e+00
IBD NTR.BLOOD.RNAARR All 0.055 (0.004) 0e+00
IBD Ovary All 0.049 (0.004) 0e+00
IBD Pancreas All 0.055 (0.004) 0e+00
IBD Pituitary All 0.046 (0.004) 0e+00
IBD Prostate All 0.047 (0.004) 0e+00
IBD Skin_Not_Sun_Exposed_Suprapubic All 0.06 (0.004) 0e+00
IBD Skin_Sun_Exposed_Lower_leg All 0.068 (0.004) 0e+00
IBD Small_Intestine_Terminal_Ileum All 0.05 (0.004) 0e+00
IBD Spleen All 0.055 (0.004) 0e+00
IBD Stomach All 0.054 (0.004) 0e+00
IBD Testis All 0.065 (0.004) 0e+00
IBD Thyroid All 0.064 (0.004) 0e+00
IBD Uterus All 0.04 (0.004) 0e+00
IBD Vagina All 0.03 (0.004) 0e+00
IBD Whole_Blood All 0.07 (0.004) 0e+00
IBD YFS.BLOOD.RNAARR All 0.062 (0.004) 0e+00
RheuArth Adipose_Subcutaneous All 0.07 (0.004) 0e+00
RheuArth Adipose_Visceral_Omentum All 0.082 (0.004) 0e+00
RheuArth Adrenal_Gland All 0.075 (0.004) 0e+00
RheuArth Artery_Aorta All 0.079 (0.004) 0e+00
RheuArth Artery_Coronary All 0.079 (0.004) 0e+00
RheuArth Artery_Tibial All 0.081 (0.004) 0e+00
RheuArth Brain_Amygdala All 0.083 (0.004) 0e+00
RheuArth Brain_Anterior_cingulate_cortex_BA24 All 0.047 (0.004) 0e+00
RheuArth Brain_Caudate_basal_ganglia All 0.077 (0.004) 0e+00
RheuArth Brain_Cerebellar_Hemisphere All 0.071 (0.004) 0e+00
RheuArth Brain_Cerebellum All 0.066 (0.004) 0e+00
RheuArth Brain_Cortex All 0.097 (0.004) 0e+00
RheuArth Brain_Frontal_Cortex_BA9 All 0.058 (0.004) 0e+00
RheuArth Brain_Hippocampus All 0.053 (0.004) 0e+00
RheuArth Brain_Hypothalamus All 0.06 (0.004) 0e+00
RheuArth Brain_Nucleus_accumbens_basal_ganglia All 0.085 (0.004) 0e+00
RheuArth Brain_Putamen_basal_ganglia All 0.052 (0.004) 0e+00
RheuArth Brain_Spinal_cord_cervical_c-1 0.05 0.043 (0.004) 0e+00
RheuArth Brain_Substantia_nigra All 0.084 (0.004) 0e+00
RheuArth Breast_Mammary_Tissue All 0.078 (0.004) 0e+00
RheuArth Cells_EBV-transformed_lymphocytes All 0.071 (0.004) 0e+00
RheuArth Cells_Transformed_fibroblasts All 0.086 (0.004) 0e+00
RheuArth CMC.BRAIN.RNASEQ All 0.073 (0.004) 0e+00
RheuArth CMC.BRAIN.RNASEQ_SPLICING All 0.056 (0.004) 0e+00
RheuArth Colon_Sigmoid All 0.081 (0.004) 0e+00
RheuArth Colon_Transverse All 0.074 (0.004) 0e+00
RheuArth Esophagus_Gastroesophageal_Junction All 0.071 (0.004) 0e+00
RheuArth Esophagus_Mucosa All 0.081 (0.004) 0e+00
RheuArth Esophagus_Muscularis All 0.089 (0.004) 0e+00
RheuArth Heart_Atrial_Appendage All 0.089 (0.004) 0e+00
RheuArth Heart_Left_Ventricle All 0.089 (0.004) 0e+00
RheuArth Liver All 0.081 (0.004) 0e+00
RheuArth Lung All 0.089 (0.004) 0e+00
RheuArth METSIM.ADIPOSE.RNASEQ All 0.095 (0.004) 0e+00
RheuArth Minor_Salivary_Gland All 0.076 (0.004) 0e+00
RheuArth Muscle_Skeletal All 0.082 (0.004) 0e+00
RheuArth Nerve_Tibial All 0.083 (0.004) 0e+00
RheuArth NTR.BLOOD.RNAARR All 0.073 (0.004) 0e+00
RheuArth Ovary All 0.077 (0.004) 0e+00
RheuArth Pancreas All 0.078 (0.004) 0e+00
RheuArth Pituitary All 0.077 (0.004) 0e+00
RheuArth Prostate All 0.05 (0.004) 0e+00
RheuArth Skin_Not_Sun_Exposed_Suprapubic All 0.062 (0.004) 0e+00
RheuArth Skin_Sun_Exposed_Lower_leg All 0.067 (0.004) 0e+00
RheuArth Small_Intestine_Terminal_Ileum All 0.074 (0.004) 0e+00
RheuArth Spleen All 0.082 (0.004) 0e+00
RheuArth Stomach All 0.087 (0.004) 0e+00
RheuArth Testis All 0.076 (0.004) 0e+00
RheuArth Thyroid All 0.086 (0.004) 0e+00
RheuArth Uterus All 0.076 (0.004) 0e+00
RheuArth Vagina All 0.08 (0.004) 0e+00
RheuArth Whole_Blood All 0.081 (0.004) 0e+00
RheuArth YFS.BLOOD.RNAARR All 0.091 (0.004) 0e+00

Show cis-regulated expression-based heritability

Proportion of heritability explained

Proportion of heritability explained

Show summary of GeRS tests

Predictive utility

Predictive utility

Correlation between GeRS model predictions and observed values in UK Biobank
FALSE Phenotype Test Model 1 Model 2 Model 1 R Model 2 R R diff R perc diff R diff pval
1 Depression GeRS_multi_pT All 1 0.064 0.064 0.001 1.1% 7.93e-01
6 Intelligence GeRS_multi_pT All 0.5 0.067 0.061 0.005 7.9% 6.95e-03
11 BMI GeRS_multi_pT All 1 0.168 0.159 0.009 5.3% 1.87e-07
16 Height GeRS_multi_pT All 0.5 0.219 0.216 0.003 1.3% 2.23e-03
21 T2D GeRS_multi_pT All 0.5 0.158 0.121 0.037 23.6% 2.21e-28
26 CAD GeRS_multi_pT All 0.5 0.118 0.106 0.012 10.2% 1.56e-05
31 IBD GeRS_multi_pT All 0.1 0.080 0.078 0.002 2.3% 6.21e-01
36 RheuArth GeRS_multi_pT All 1e.06 0.136 0.118 0.018 13.4% 2.80e-10
2 Depression GeRS_multi_tissue All CMC.BRAIN.RNASEQ 0.063 0.059 0.004 5.8% 3.10e-01
7 Intelligence GeRS_multi_tissue All Adipose.Subcutaneous 0.067 0.056 0.010 15.5% 1.89e-04
12 BMI GeRS_multi_tissue All CMC.BRAIN.RNASEQ 0.168 0.138 0.030 17.8% 1.69e-25
17 Height GeRS_multi_tissue All Nerve.Tibial 0.219 0.182 0.037 16.9% 1.36e-44
22 T2D GeRS_multi_tissue All CMC.BRAIN.RNASEQ 0.159 0.114 0.045 28.3% 1.18e-33
27 CAD GeRS_multi_tissue All Artery.Tibial 0.117 0.089 0.028 23.6% 1.13e-13
32 IBD GeRS_multi_tissue All Whole.Blood 0.080 0.070 0.010 13% 1.61e-02
37 RheuArth GeRS_multi_tissue All Brain.Cortex 0.136 0.097 0.040 29% 3.46e-27
3 Depression PRS_and_GeRS All PRS 0.131 0.131 0.000 -0.1% 9.66e-01
8 Intelligence PRS_and_GeRS All PRS 0.095 0.090 0.006 5.9% 8.24e-04
13 BMI PRS_and_GeRS All PRS 0.284 0.281 0.003 1% 4.36e-05
18 Height PRS_and_GeRS All PRS 0.325 0.322 0.004 1.2% 6.98e-08
23 T2D PRS_and_GeRS All PRS 0.227 0.218 0.009 4.1% 1.89e-06
28 CAD PRS_and_GeRS All PRS 0.173 0.170 0.003 1.6% 2.95e-02
33 IBD PRS_and_GeRS All PRS 0.116 0.127 -0.011 -9.6% 6.01e-04
38 RheuArth PRS_and_GeRS All PRS 0.168 0.133 0.035 20.8% 1.69e-31
5 Depression PRScs_and_GeRS All PRS 0.141 0.142 -0.002 -1.2% 1.62e-01
10 Intelligence PRScs_and_GeRS All PRS 0.102 0.099 0.002 2.5% 2.82e-02
15 BMI PRScs_and_GeRS All PRS 0.303 0.302 0.001 0.4% 2.82e-02
20 Height PRScs_and_GeRS All PRS 0.352 0.351 0.001 0.3% 2.64e-02
25 T2D PRScs_and_GeRS All PRS 0.238 0.237 0.001 0.5% 3.65e-01
30 CAD PRScs_and_GeRS All PRS 0.187 0.187 0.000 0.2% 4.62e-01
35 IBD PRScs_and_GeRS All PRS 0.121 0.134 -0.012 -10.2% 1.36e-05
40 RheuArth PRScs_and_GeRS All PRS 0.163 0.157 0.007 4% 5.89e-08
4 Depression Strat_PRS All strat.PRS 0.107 0.109 -0.002 -1.4% 4.17e-01
9 Intelligence Strat_PRS All strat.PRS 0.086 0.079 0.007 7.8% 9.51e-04
14 BMI Strat_PRS All strat.PRS 0.251 0.246 0.004 1.7% 7.12e-06
19 Height Strat_PRS All strat.PRS 0.309 0.306 0.003 1.1% 3.19e-06
24 T2D Strat_PRS All strat.PRS 0.214 0.206 0.009 4.1% 7.92e-06
29 CAD Strat_PRS All strat.PRS 0.162 0.160 0.001 0.9% 2.28e-01
34 IBD Strat_PRS All strat.PRS 0.098 0.108 -0.010 -10.7% 3.48e-03
39 RheuArth Strat_PRS All strat.PRS 0.158 0.112 0.045 28.9% 4.06e-34
Sensitivity analysis for Rheumatoid Arthritis
Phenotype Test Model 1 Model 2 Model 1 R Model 2 R R diff R perc diff R diff pval
RheuArth PRS_and_GeRS All PRS 0.168 0.133 0.035 20.8% 1.69e-31
RheuArth PRS_noMHCClump_and_GeRS All PRS 0.160 0.147 0.013 8.4% 6.40e-11
RheuArth PRScs_and_GeRS All PRS 0.163 0.157 0.007 4% 5.89e-08

Show summary of GeRS PP4 tests

Predictive utility

Predictive utility

Correlation between GeRS PP4 model predictions and observed values in UK Biobank
FALSE Phenotype Test Model 1 Model 2 Model 1 R Model 2 R R diff R diff pval
1 Depression GeRS_multi_tissue All Thyroid 0.043 0.036 0.008 9.16e-02
3 Intelligence GeRS_multi_tissue All Stomach 0.045 0.039 0.006 8.54e-02
5 BMI GeRS_multi_tissue All CMC.BRAIN.RNASEQ 0.101 0.075 0.025 1.82e-12
7 Height GeRS_multi_tissue All CMC.BRAIN.RNASEQ 0.198 0.140 0.059 6.97e-59
9 T2D GeRS_multi_tissue All Adipose.Subcutaneous 0.111 0.068 0.043 1.50e-24
11 CAD GeRS_multi_tissue All Nerve.Tibial 0.090 0.060 0.030 1.33e-13
13 IBD GeRS_multi_tissue All Whole.Blood 0.082 0.057 0.025 6.46e-12
15 RheuArth GeRS_multi_tissue All Brain.Cortex 0.117 0.083 0.033 8.28e-23
2 Depression PRS_and_GeRS All PRS 0.126 0.131 -0.004 8.88e-03
4 Intelligence PRS_and_GeRS All PRS 0.095 0.090 0.005 1.56e-02
6 BMI PRS_and_GeRS All PRS 0.282 0.281 0.001 1.10e-01
8 Height PRS_and_GeRS All PRS 0.327 0.322 0.006 5.31e-07
10 T2D PRS_and_GeRS All PRS 0.220 0.218 0.002 2.02e-01
12 CAD PRS_and_GeRS All PRS 0.170 0.170 0.000 6.58e-01
14 IBD PRS_and_GeRS All PRS 0.127 0.127 0.000 9.24e-01
16 RheuArth PRS_and_GeRS All PRS 0.161 0.133 0.028 2.70e-29

Show summary of GeRS TissueSpecific tests

Predictive utility

Predictive utility

Correlation between GeRS TissueSpecific model predictions and observed values in UK Biobank
FALSE Phenotype Test Model 1 Model 2 Model 1 R Model 2 R R diff R diff pval
1 Depression GeRS_multi_tissue All Thyroid 0.067 0.053 0.015 1.97e-05
3 Intelligence GeRS_multi_tissue All CMC.BRAIN.RNASEQ 0.058 0.050 0.008 1.49e-02
5 BMI GeRS_multi_tissue All CMC.BRAIN.RNASEQ 0.165 0.113 0.052 1.12e-44
7 Height GeRS_multi_tissue All Nerve.Tibial 0.210 0.154 0.056 9.83e-64
9 T2D GeRS_multi_tissue All Artery.Tibial 0.155 0.095 0.059 4.68e-47
11 CAD GeRS_multi_tissue All Artery.Tibial 0.109 0.075 0.034 1.70e-16
13 IBD GeRS_multi_tissue All Whole.Blood 0.099 0.066 0.033 8.13e-16
15 RheuArth GeRS_multi_tissue All YFS.BLOOD.RNAARR 0.121 0.080 0.042 1.40e-19
2 Depression PRS_and_GeRS All PRS 0.129 0.131 -0.001 2.64e-01
4 Intelligence PRS_and_GeRS All PRS 0.093 0.090 0.003 5.59e-02
6 BMI PRS_and_GeRS All PRS 0.284 0.281 0.002 1.24e-03
8 Height PRS_and_GeRS All PRS 0.325 0.322 0.004 4.41e-06
10 T2D PRS_and_GeRS All PRS 0.226 0.218 0.009 2.15e-08
12 CAD PRS_and_GeRS All PRS 0.169 0.170 -0.001 2.26e-01
14 IBD PRS_and_GeRS All PRS 0.132 0.127 0.005 1.04e-01
16 RheuArth PRS_and_GeRS All PRS 0.166 0.133 0.033 6.75e-25

Show GeRS, PRS, stratified-PRS comparison

Predictive utility

Predictive utility

Proportion of PRS explained by GeRS
Phenotype Prop_GE Prop_GE_coloc
Depression 0.479 0.300
Intelligence 0.743 0.361
BMI 0.596 0.320
Height 0.681 0.554
T2D 0.729 0.475
CAD 0.687 0.488
IBD 0.630 0.571
RheuArth 1.026 0.964

Show GeRS coloc and tissue specific comparison

Predictive utility

Predictive utility

Comparison of GeRS
Phenotype Method R SE
Depression GeRS (best) 0.059 0.004
Depression GeRS (all) 0.063 0.004
Depression GeRS coloc (best) 0.029 0.004
Depression GeRS coloc (all) 0.039 0.004
Depression GeRS TS (best) 0.053 0.004
Depression GeRS TS (all) 0.067 0.004
Intelligence GeRS (best) 0.056 0.004
Intelligence GeRS (all) 0.067 0.004
Intelligence GeRS coloc (best) 0.033 0.004
Intelligence GeRS coloc (all) 0.032 0.004
Intelligence GeRS TS (best) 0.050 0.004
Intelligence GeRS TS (all) 0.058 0.004
BMI GeRS (best) 0.138 0.004
BMI GeRS (all) 0.168 0.004
BMI GeRS coloc (best) 0.069 0.004
BMI GeRS coloc (all) 0.090 0.004
BMI GeRS TS (best) 0.113 0.004
BMI GeRS TS (all) 0.165 0.004
Height GeRS (best) 0.182 0.004
Height GeRS (all) 0.219 0.004
Height GeRS coloc (best) 0.132 0.004
Height GeRS coloc (all) 0.178 0.004
Height GeRS TS (best) 0.154 0.004
Height GeRS TS (all) 0.210 0.004
T2D GeRS (best) 0.114 0.004
T2D GeRS (all) 0.159 0.004
T2D GeRS coloc (best) 0.066 0.004
T2D GeRS coloc (all) 0.103 0.004
T2D GeRS TS (best) 0.095 0.004
T2D GeRS TS (all) 0.155 0.004
CAD GeRS (best) 0.089 0.004
CAD GeRS (all) 0.117 0.004
CAD GeRS coloc (best) 0.059 0.004
CAD GeRS coloc (all) 0.083 0.004
CAD GeRS TS (best) 0.075 0.004
CAD GeRS TS (all) 0.109 0.004
IBD GeRS (best) 0.070 0.004
IBD GeRS (all) 0.080 0.004
IBD GeRS coloc (best) 0.044 0.004
IBD GeRS coloc (all) 0.073 0.004
IBD GeRS TS (best) 0.066 0.004
IBD GeRS TS (all) 0.099 0.004
RheuArth GeRS (best) 0.097 0.004
RheuArth GeRS (all) 0.136 0.004
RheuArth GeRS coloc (best) 0.083 0.004
RheuArth GeRS coloc (all) 0.128 0.004
RheuArth GeRS TS (best) 0.080 0.004
RheuArth GeRS TS (all) 0.121 0.004

Show association with GeRS for each SNP-weight set

Predictive utility

Predictive utility

Show association with GeRS PP4 for each SNP-weight set

Predictive utility

Predictive utility

Show association with GeRS TissueSpecific for each SNP-weight set

Predictive utility

Predictive utility

Show association with GeRS for each SNP-weight set after accounting for number of features

Predictive utility

Predictive utility

Show effect of number of features in the SNP-weight set

Number of feature effect

Number of feature effect


4.2 TEDS

Plot per pT GeRS results

#####
# Compare results across pTs for each phenotype
#####
pheno<-c('Height21', 'BMI21', 'GCSE', 'ADHD')
pheno_label<-c('Height', 'BMI', 'GCSE', 'ADHD')
gwas<-c('HEIG03', 'BODY11', 'EDUC03', 'ADHD04')
weights=read.table('/users/k1806347/brc_scratch/Data/TWAS_sumstats/FUSION/snp_weight_list.txt', header=F)$V1

weights_clean<-gsub('_',' ',weights)
weights_clean<-gsub('CMC.BRAIN.RNASEQ','CMC DLPFC',weights_clean)
weights_clean<-gsub('SPLICING','Splicing',weights_clean)
weights_clean<-gsub('NTR.BLOOD.RNAARR','NTR Blood',weights_clean)
weights_clean<-gsub('YFS.BLOOD.RNAARR','YFS Blood',weights_clean)
weights_clean<-gsub('METSIM.ADIPOSE.RNASEQ','METSIM Adipose',weights_clean)
weights_clean[!grepl('CMC|NTR|YFS|METSIM', weights)]<-paste0('GTEx ',weights_clean[!grepl('CMC|NTR|YFS|METSIM', weights)])
#to add gtex to each of the snp weights which don't have CMC NTR or YFS in front
weights_clean<-gsub('Brain', '', weights_clean)
weights_clean <- gsub('Anterior cingulate cortex', 'ACC', weights_clean)
weights_clean <- gsub('basal ganglia', '', weights_clean)
weights_clean <- gsub('BA9', '', weights_clean)
weights_clean <- gsub('BA24', '', weights_clean)
weights_clean <- gsub('  ', ' ', weights_clean)
weights_clean_short<-substr(weights_clean, start = 1, stop = 15)  #start the name at the first character and stop at the 25th
weights_clean_short[nchar(weights_clean) > 15]<-paste0(weights_clean_short[nchar(weights_clean) > 15], "...")

res<-NULL
res_best<-NULL
for(i in 1:length(gwas)){
  for(weight in 1:length(weights)){
    res_i<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/',pheno[i],'/Association_withGeRSs/TEDS.w_hm3.',weights[weight],'.',gwas[i],'.EUR-GeRSs.pred_eval.txt'), header=T, stringsAsFactors=F)

    res_i$Phenotype<-pheno[i]
    res_i$Weight<-weights[weight]
    
    if(sum(grepl('R2l',names(res_i)))>0){
        res_i<-res_i[,c('Phenotype','Weight','Model','R','SE','P','R2l')]
        names(res_i)<-c('Phenotype','Weight','Model','R','SE','P','R2')
        res_i$Binary<-T
    } else {
        res_i<-res_i[,c('Phenotype','Weight','Model','R','SE','P','R2o')]
        names(res_i)<-c('Phenotype','Weight','Model','R','SE','P','R2')
        res_i$Binary<-F
    }
    
    res_i$Model<-gsub('_group','',gsub(paste0(gwas[i],'.'),'',res_i$Model))
    res_i$Model<-factor(res_i$Model, levels=res_i$Model)
    
    res_i_best<-res_i[res_i$R == max(res_i$R),]
  
    res<-rbind(res, res_i)
    res_best<-rbind(res_best, res_i_best)
  }
}

res_brief<-res[,c('Phenotype','Weight','Model','R','SE','P')]
res_best_brief<-res_best[,c('Phenotype','Weight','Model','R','SE','P')]

write.csv(res_brief, '/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/GeRS_per_pT.csv', row.names=F, quote=F)
write.csv(res_best_brief, '/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/GeRS_best_pT.csv', row.names=F, quote=F)

library(ggplot2)
library(cowplot)

res$Model<-gsub('e.0','*x*10^-', res$Model)
res$Model<-factor(res$Model, levels=unique(res$Model))
res$P<-format(res$P, scientific = TRUE, digits = 1)
res$P<-gsub('e-','*x*10^-',res$P)

res_plot<-list()
for(i in 1:length(gwas)){
  # Extract result for 5 most predictive tissue
  tmp<-res_best[res_best$Phenotype == pheno[i],]
  tmp<-tmp[order(-tmp$R2),]
  tmp<-tmp[1:3,]
  best_weights<-tmp$Weight
  
  res_tmp<-res[res$Phenotype == pheno[i] & (res$Weight %in% best_weights),]
  ylim_max<-max(res_tmp$R2)
  ylim_max<-ylim_max+ylim_max/1.5
  if(res[res$Phenotype == pheno[i],]$Binary[1] == T){
    ylab<-'Liability R-squared'
  } else {
    ylab<-'R-squared'
  }
  
  res_plot_tmp<-list()
  for(weight in best_weights){
    weights_index<-which(weights == weight)
    print(weight)
  res_plot_tmp[[as.character(weights[weights_index])]]<-ggplot(res[res$Phenotype == pheno[i] & res$Weight == weights[weights_index],], aes(x=Model, y=R2)) +
                                    geom_bar(stat="identity", position=position_dodge(), fill='#3399FF') +
                                    labs(y=ylab, x='pT', title=paste0('\n\n',weights_clean_short[weights_index])) +
                                    theme_half_open() +
                                    ylim(0,ylim_max) +
                                    geom_text(data=res[res$Phenotype == pheno[i] & res$Weight == weights[weights_index],], aes(x=Model, y=R2, label=P), vjust=0.5, hjust= -0.15, angle=90, size=4, parse=T) +
                                    theme(axis.text.x = element_text(angle = 55, vjust = 1, hjust=1), plot.title = element_text(hjust = 0.5, size=12)) +
                                    background_grid(major = 'y', minor = 'y') +
                                    scale_x_discrete(labels = parse(text = as.character(res[res$Phenotype == pheno[i] & res$Weight == weights[weights_index],]$Model))) +
                                    coord_cartesian(clip='off')

  }
  res_plot[[pheno[i]]]<-plot_grid(plotlist=res_plot_tmp, nrow = 1)
}

png('/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/GeRS_per_pT_TEDS.png', units='px', res=300, width=3000, height=3750)
  plot_grid(plotlist=res_plot, ncol = 1, labels = paste0(pheno_label))
dev.off()

#######
# Recreate plots using R on the y axis and full SNP-weight set names
#######

res_plot<-list()
for(i in 1:length(gwas)){
  # Extract result for 5 most predictive tissue
  tmp<-res_best[res_best$Phenotype == pheno[i],]
  tmp<-tmp[order(-tmp$R),]
  tmp<-tmp[1:3,]
  best_weights<-tmp$Weight
  
  res_tmp<-res[res$Phenotype == pheno[i] & (res$Weight %in% best_weights),]
  ylim_max<-max(res_tmp$R)
  ylim_max<-ylim_max+ylim_max*1.5
  if(min(res_tmp$R) < 0){
    ylim_min<-min(res_tmp$R)
    ylim_min<-ylim_min-max(res_tmp$SE)
  } else {
    ylim_min<-NA
  }

  res_plot_tmp<-list()
  for(weight in best_weights){
    weights_index<-which(weights == weight)
    print(weight)
  res_plot_tmp[[as.character(weights[weights_index])]]<-ggplot(res[res$Phenotype == pheno[i] & res$Weight == weights[weights_index],], aes(x=Model, y=R)) +
                                    geom_bar(stat="identity", position=position_dodge(), fill='#3399FF') +
                                    geom_errorbar(aes(ymin=R-SE, ymax=R+SE), width=.2, position=position_dodge(.9)) +
                                    labs(y='Correlation', x='pT', title=paste0('\n\n',weights_clean[weights_index])) +
                                    theme_half_open() +
                                    ylim(ylim_min,ylim_max) +
                                    geom_text(data=res[res$Phenotype == pheno[i] & res$Weight == weights[weights_index],], aes(x=Model, y=R+SE, label=P), vjust=0.3, hjust= -0.15, angle=90, size=4, parse=T) +
                                    theme(axis.text.x = element_text(angle = 55, vjust = 1, hjust=1), plot.title = element_text(hjust = 0.4, size=12)) +
                                    background_grid(major = 'y', minor = 'y') +
                                    scale_x_discrete(labels = parse(text = as.character(res[res$Phenotype == pheno[i] & res$Weight == weights[weights_index],]$Model))) +
                                    coord_cartesian(clip='off')

  }
  res_plot[[pheno[i]]]<-plot_grid(plotlist=res_plot_tmp, nrow = 1)
}

png('/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/GeRS_per_pT_TEDS_R.png', units='px', res=300, width=3000, height=3750)
  plot_grid(plotlist=res_plot, ncol = 1, labels = paste0(pheno_label))
dev.off()

Plot comparison results

#####
# Compare results from each approach
#####
pheno<-c('Height21', 'BMI21', 'GCSE', 'ADHD')
pheno_label<-c('Height', 'BMI', 'GCSE', 'ADHD')
gwas<-c('HEIG03', 'BODY11', 'EDUC03', 'ADHD04')

res<-list()
for(i in 1:length(gwas)){
res_1<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/',pheno[i],'/Association_withGeRSs/TEDS.w_hm3.AllTissue.',gwas[i],'.EUR-GeRSs.per_PT.pred_comp.txt'), header=T, stringsAsFactors=F)
res_1<-res_1[res_1$Model_1 == 'All',]
res_1<-res_1[res_1$Model_2 != 'All',]
res_2<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/',pheno[i],'/Association_withGeRSs/TEDS.w_hm3.AllTissue.',gwas[i],'.EUR-GeRSs.pred_comp.txt'), header=T, stringsAsFactors=F)
res_2<-res_2[res_2$Model_1 == 'All',]
res_2<-res_2[res_2$Model_2 != 'All',]
res_3<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/',pheno[i],'/Association_withPRS_and_GeRSs/TEDS.w_hm3.AllTissue.',gwas[i],'.EUR-GeRSs.EUR-PRSs.pt_clump.pred_comp.txt'), header=T, stringsAsFactors=F)
res_4<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/',pheno[i],'/Association_withPRSs/TEDS.w_hm3.',gwas[i],'.EUR-PRSs-TWAS_gene_stratified.pred_comp.txt'), header=T, stringsAsFactors=F)
res_5<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/',pheno[i],'/Association_withPRS_and_GeRSs/TEDS.w_hm3.AllTissue.',gwas[i],'.EUR-GeRSs.EUR-PRSs.PRScs.pred_comp.txt'), header=T, stringsAsFactors=F)

res[[pheno[i]]]<-data.frame(Test=c('GeRS_multi_pT','GeRS_multi_tissue','PRS_and_GeRS','Strat_PRS','PRScs_and_GeRS'),        
                        do.call(rbind,list( res_1[res_1$Model_2_R == max(res_1$Model_2_R),],
                                                    res_2[res_2$Model_2_R == max(res_2$Model_2_R),],
                                                    res_3[8,],
                                                    res_4[8,],
                                                    res_5[8,])))
}

res_table<-do.call(rbind, res)

# Calculate percentage difference
res_table$R_diff_perc<-res_table$R_diff/res_table$Model_1_R*100

res_table$Phenotype<-gsub('\\..*','',rownames(res_table))
res_table<-res_table[,c('Phenotype',names(res_table)[-length(names(res_table))])]
write.csv(res_table, '/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/GeRS_tests_summary.csv', row.names=F, quote=F)

####
# Plot the R2 when using PRS only, and using PRS + multi-tissue GeRS
####

# Organise the results
res_plot<-list()
for(i in 1:length(gwas)){
  tmp_res<-res[[pheno[i]]]

  tmp_res$R_diff_pval_num<-tmp_res$R_diff_pval
  
  tmp_res$R_diff_pval<-format(tmp_res$R_diff_pval, scientific = TRUE, digits = 2)
  tmp_res$R_diff_pval<-gsub('e-','*x*10^-',tmp_res$R_diff_pval)
  
  tmp_res_Model_1<-tmp_res[,grepl('Test|Model_1|R_diff',names(tmp_res))]
  names(tmp_res_Model_1)<-c('Test','Model','R','R_diff','R_diff_pval','R_diff_pval_num')
  tmp_res_Model_2<-tmp_res[,grepl('Test|Model_2|R_diff',names(tmp_res))]
  names(tmp_res_Model_2)<-c('Test','Model','R','R_diff','R_diff_pval','R_diff_pval_num')
  tmp_res_Model_2$R_diff<-NA
  tmp_res_Model_2$R_diff_pval<-NA
  
  tmp_res_plot<-rbind(tmp_res_Model_1,tmp_res_Model_2)
  tmp_res_plot$Phenotype<-pheno_label[i]
  
  res_plot[[pheno[i]]]<-tmp_res_plot
}

# Combine results for each phenotype and prepare for plotting
All_res_plot<-do.call(rbind, res_plot)

All_res_plot$Test<-factor(All_res_plot$Test, levels=res[[1]]$Test)
All_res_plot$Phenotype<-factor(All_res_plot$Phenotype, level=unique(All_res_plot$Phenotype))
All_res_plot<-All_res_plot[order(All_res_plot$Phenotype,All_res_plot$Test),]

All_res_plot$Val_Label_1<-NA
All_res_plot$Val_Label_1[!is.na(All_res_plot$R_diff)]<-paste0('Diff == ',round(All_res_plot$R_diff[!is.na(All_res_plot$R_diff)],3))

All_res_plot$Val_Label_2<-NA
All_res_plot$Val_Label_2[!is.na(All_res_plot$R_diff)]<-paste0('italic(p) == ',All_res_plot$R_diff_pval[!is.na(All_res_plot$R_diff)])

All_res_plot$Model[!All_res_plot$Model == 'All' & All_res_plot$Test == 'GeRS_multi_pT']<-'GeRS Best pT   '
All_res_plot$Model[All_res_plot$Model == 'All' & All_res_plot$Test == 'GeRS_multi_pT']<-'GeRS Multi pT'

All_res_plot$Model[!All_res_plot$Model == 'All' & All_res_plot$Test == 'GeRS_multi_tissue']<-'GeRS Best Tissue   '
All_res_plot$Model[All_res_plot$Model == 'All' & All_res_plot$Test == 'GeRS_multi_tissue']<-'GeRS Multi Tissue'

All_res_plot$Model[!All_res_plot$Model == 'All' & All_res_plot$Test == 'PRS_and_GeRS']<-'PRS only   '
All_res_plot$Model[All_res_plot$Model == 'All' & All_res_plot$Test == 'PRS_and_GeRS']<-'PRS + GeRS'

All_res_plot$Model[!All_res_plot$Model == 'All' & All_res_plot$Test == 'Strat_PRS']<-'Strat_PRS only'
All_res_plot$Model[All_res_plot$Model == 'All' & All_res_plot$Test == 'Strat_PRS']<-'Strat_PRS + GeRS'

All_res_plot$Model[!All_res_plot$Model == 'All' & All_res_plot$Test == 'PRScs_and_GeRS']<-'PRScs only   '
All_res_plot$Model[All_res_plot$Model == 'All' & All_res_plot$Test == 'PRScs_and_GeRS']<-'PRScs + GeRS'

All_res_plot$Model<-factor(All_res_plot$Model, levels=c("GeRS Best pT   ","GeRS Multi pT", "GeRS Best Tissue   ","GeRS Multi Tissue","PRS only   ","PRS + GeRS", "Strat_PRS only", "Strat_PRS + GeRS","PRScs only   ","PRScs + GeRS"))

library(ggplot2)
library(cowplot)

# Plot results
Plot_1<-ggplot(All_res_plot[All_res_plot$Test == 'GeRS_multi_pT',], aes(x=Phenotype, y=R, fill=Model)) +
          geom_bar(stat="identity", position=position_dodge()) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'GeRS_multi_pT',]$Val_Label_1, parse=T, vjust=-0.5, hjust=0) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'GeRS_multi_pT',]$Val_Label_2, parse=T, vjust=1, hjust=0) +
          labs(y='Correlation', x='') +
          ylim(NA,0.65) +
          theme_half_open() +
          theme(legend.title=element_blank(),legend.position="top") +
          background_grid(major = 'x', minor = 'x') +
          coord_flip()

Plot_2<-ggplot(All_res_plot[All_res_plot$Test == 'GeRS_multi_tissue',], aes(x=Phenotype, y=R, fill=Model)) +
          geom_bar(stat="identity", position=position_dodge()) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'GeRS_multi_tissue',]$Val_Label_1, parse=T, vjust=-0.5, hjust=0) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'GeRS_multi_tissue',]$Val_Label_2, parse=T, vjust=1, hjust=0) +
          labs(y='Correlation', x='') +
          ylim(NA,0.65) +
          theme_half_open() +
          theme(legend.title=element_blank(),legend.position="top") +
          background_grid(major = 'x', minor = 'x') +
          coord_flip()

Plot_3<-ggplot(All_res_plot[All_res_plot$Test == 'PRS_and_GeRS',], aes(x=Phenotype, y=R, fill=Model)) +
          geom_bar(stat="identity", position=position_dodge()) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'PRS_and_GeRS',]$Val_Label_1, parse=T, vjust=-0.5, hjust=0) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'PRS_and_GeRS',]$Val_Label_2, parse=T, vjust=1, hjust=0) +
          labs(y='Correlation', x='') +
          ylim(NA,0.65) +
          theme_half_open() +
          theme(legend.title=element_blank(),legend.position="top") +
          background_grid(major = 'x', minor = 'x') +
          coord_flip()

Plot_4<-ggplot(All_res_plot[All_res_plot$Test == 'Strat_PRS',], aes(x=Phenotype, y=R, fill=Model)) +
          geom_bar(stat="identity", position=position_dodge()) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'Strat_PRS',]$Val_Label_1, parse=T, vjust=-0.5, hjust=0) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'Strat_PRS',]$Val_Label_2, parse=T, vjust=1, hjust=0) +
          labs(y='Correlation', x='') +
          ylim(NA,0.65) +
          theme_half_open() +
          theme(legend.title=element_blank(),legend.position="top") +
          background_grid(major = 'x', minor = 'x') +
          coord_flip()

Plot_5<-ggplot(All_res_plot[All_res_plot$Test == 'PRScs_and_GeRS',], aes(x=Phenotype, y=R, fill=Model)) +
          geom_bar(stat="identity", position=position_dodge()) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'PRScs_and_GeRS',]$Val_Label_1, parse=T, vjust=-0.5, hjust=0) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'PRScs_and_GeRS',]$Val_Label_2, parse=T, vjust=1, hjust=0) +
          labs(y='Correlation', x='') +
          ylim(NA,0.65) +
          theme_half_open() +
          theme(legend.title=element_blank(),legend.position="top") +
          background_grid(major = 'x', minor = 'x') +
          coord_flip()

png('/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/GeRS_tests_summary_TEDS.png', units='px', res=300, width=3500, height=3000)
  plot_grid(Plot_1,Plot_2,Plot_3, Plot_5, labels = "AUTO")
dev.off()

###
# Recreate figure higlighting significant results
###

All_res_plot$Sig<-'NS'
All_res_plot$Sig[All_res_plot$R_diff_pval_num < 0.05 & All_res_plot$R_diff > 0]<-'Pos'
All_res_plot$Sig[All_res_plot$R_diff_pval_num < 0.05 & All_res_plot$R_diff < 0]<-'Neg'
All_res_plot$Sig<-factor(All_res_plot$Sig, levels=c('NS','Pos','Neg'))

scale_colour_op <- function(...){
    ggplot2:::manual_scale(
        'colour', 
        values = setNames(c("#000000", "#009933","#FF0000"), c('NS', 'Pos', 'Neg')), 
        ...
    )
}

Plot_1<-ggplot(All_res_plot[All_res_plot$Test == 'GeRS_multi_pT',], aes(x=Phenotype, y=R, fill=Model)) +
          geom_bar(stat="identity", position=position_dodge()) +
          geom_text(aes(y=R+0.04, colour=Sig), label=All_res_plot[All_res_plot$Test == 'GeRS_multi_pT',]$Val_Label_1, parse=T, vjust=-0.5, hjust=0,show.legend = FALSE) +
          geom_text(aes(y=R+0.04, colour=Sig), label=All_res_plot[All_res_plot$Test == 'GeRS_multi_pT',]$Val_Label_2, parse=T, vjust=1, hjust=0,show.legend = FALSE) +
          scale_colour_op() +
          labs(y='Correlation', x='') +
              ylim(NA,0.65) +
          theme_half_open() +
          theme(legend.title=element_blank(),legend.position="top") +
          background_grid(major = 'x', minor = 'x') +
          coord_flip()

Plot_2<-ggplot(All_res_plot[All_res_plot$Test == 'GeRS_multi_tissue',], aes(x=Phenotype, y=R, fill=Model)) +
          geom_bar(stat="identity", position=position_dodge()) +
          geom_text(aes(y=R+0.04, colour=Sig), label=All_res_plot[All_res_plot$Test == 'GeRS_multi_tissue',]$Val_Label_1, parse=T, vjust=-0.5, hjust=0,show.legend = FALSE) +
          geom_text(aes(y=R+0.04, colour=Sig), label=All_res_plot[All_res_plot$Test == 'GeRS_multi_tissue',]$Val_Label_2, parse=T, vjust=1, hjust=0,show.legend = FALSE) +
          scale_colour_op() +
          labs(y='Correlation', x='') +
          ylim(NA,0.65) +
          theme_half_open() +
          theme(legend.title=element_blank(),legend.position="top") +
          background_grid(major = 'x', minor = 'x') +
          coord_flip()

Plot_3<-ggplot(All_res_plot[All_res_plot$Test == 'PRS_and_GeRS',], aes(x=Phenotype, y=R, fill=Model)) +
          geom_bar(stat="identity", position=position_dodge()) +
          geom_text(aes(y=R+0.04, colour=Sig), label=All_res_plot[All_res_plot$Test == 'PRS_and_GeRS',]$Val_Label_1, parse=T, vjust=-0.5, hjust=0,show.legend = FALSE) +
          geom_text(aes(y=R+0.04, colour=Sig), label=All_res_plot[All_res_plot$Test == 'PRS_and_GeRS',]$Val_Label_2, parse=T, vjust=1, hjust=0,show.legend = FALSE) +
          scale_colour_op() +
          labs(y='Correlation', x='') +
          ylim(NA,0.65) +
          theme_half_open() +
          theme(legend.title=element_blank(),legend.position="top") +
          background_grid(major = 'x', minor = 'x') +
          coord_flip()

Plot_4<-ggplot(All_res_plot[All_res_plot$Test == 'Strat_PRS',], aes(x=Phenotype, y=R, fill=Model)) +
          geom_bar(stat="identity", position=position_dodge()) +
          geom_text(aes(y=R+0.04, colour=Sig), label=All_res_plot[All_res_plot$Test == 'Strat_PRS',]$Val_Label_1, parse=T, vjust=-0.5, hjust=0,show.legend = FALSE) +
          geom_text(aes(y=R+0.04, colour=Sig), label=All_res_plot[All_res_plot$Test == 'Strat_PRS',]$Val_Label_2, parse=T, vjust=1, hjust=0,show.legend = FALSE) +
          scale_colour_op() +
          labs(y='Correlation', x='') +
          ylim(NA,0.65) +
          theme_half_open() +
          theme(legend.title=element_blank(),legend.position="top") +
          background_grid(major = 'x', minor = 'x') +
          coord_flip()

Plot_5<-ggplot(All_res_plot[All_res_plot$Test == 'PRScs_and_GeRS',], aes(x=Phenotype, y=R, fill=Model)) +
          geom_bar(stat="identity", position=position_dodge()) +
          geom_text(aes(y=R+0.04, colour=Sig), label=All_res_plot[All_res_plot$Test == 'PRScs_and_GeRS',]$Val_Label_1, parse=T, vjust=-0.5, hjust=0,show.legend = FALSE) +
          geom_text(aes(y=R+0.04, colour=Sig), label=All_res_plot[All_res_plot$Test == 'PRScs_and_GeRS',]$Val_Label_2, parse=T, vjust=1, hjust=0,show.legend = FALSE) +
          scale_colour_op() +
          labs(y='Correlation', x='') +
          ylim(NA,0.65) +
          theme_half_open() +
          theme(legend.title=element_blank(),legend.position="top") +
          background_grid(major = 'x', minor = 'x') +
          coord_flip()

png('/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/GeRS_tests_summary_TEDS.png', units='px', res=300, width=3500, height=3000)
  plot_grid(Plot_1,Plot_2,Plot_3, Plot_5, labels = "AUTO")
dev.off()

Plot comparison results (PP4+clump)

#####
# Compare results from each approach
#####

pheno<-c('Height21', 'BMI21', 'GCSE', 'ADHD')
gwas<-c('HEIG03', 'BODY11', 'EDUC03', 'ADHD04')
weight=c('YFS.BLOOD.RNAARR')

res<-list()
for(i in 1:length(gwas)){
res_2<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/',pheno[i],'/Association_withGeRSs/TEDS.w_hm3.AllTissue.',gwas[i],'.EUR-GeRSs_PP4.pred_comp.txt'), header=T, stringsAsFactors=F)
res_2<-res_2[res_2$Model_1 == 'All',]
res_2<-res_2[res_2$Model_2 != 'All',]
res_3<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/',pheno[i],'/Association_withPRS_and_GeRSs/TEDS.w_hm3.AllTissue.',gwas[i],'.EUR-GeRSs_PP4.EUR-PRSs.pt_clump.pred_comp.txt'), header=T, stringsAsFactors=F)

res[[pheno[i]]]<-data.frame(Test=c('GeRS_multi_tissue','PRS_and_GeRS'),     
                        do.call(rbind,list( res_2[res_2$Model_2_R == max(res_2$Model_2_R),],
                                                    res_3[8,])))
}

res_table<-do.call(rbind, res)
res_table$Phenotype<-gsub('\\..*','',rownames(res_table))
res_table<-res_table[,c('Phenotype',names(res_table)[-length(names(res_table))])]
write.csv(res_table, '/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/GeRS_PP4_tests_summary.csv', row.names=F, quote=F)

####
# Plot the R2 when using PRS only, and using PRS + multi-tissue GeRS
####

# Organise the results
res_plot<-list()
for(i in 1:length(gwas)){
tmp_res<-res[[pheno[i]]]

tmp_res$R_diff_pval<-format(tmp_res$R_diff_pval, scientific = TRUE, digits = 2)
tmp_res$R_diff_pval<-gsub('e-','*x*10^-',tmp_res$R_diff_pval)

tmp_res_Model_1<-tmp_res[,grepl('Test|Model_1|R_diff',names(tmp_res))]
names(tmp_res_Model_1)<-c('Test','Model','R','R_diff','R_diff_pval')
tmp_res_Model_2<-tmp_res[,grepl('Test|Model_2|R_diff',names(tmp_res))]
names(tmp_res_Model_2)<-c('Test','Model','R','R_diff','R_diff_pval')
tmp_res_Model_2$R_diff<-NA
tmp_res_Model_2$R_diff_pval<-NA

tmp_res_plot<-rbind(tmp_res_Model_1,tmp_res_Model_2)
tmp_res_plot$Phenotype<-pheno[i]

res_plot[[pheno[i]]]<-tmp_res_plot
}

# Combine results for each phenotype and prepare for plotting
All_res_plot<-do.call(rbind, res_plot)

All_res_plot$Test<-factor(All_res_plot$Test, levels=res[[1]]$Test)
All_res_plot$Phenotype<-factor(All_res_plot$Phenotype, level=unique(All_res_plot$Phenotype))
All_res_plot<-All_res_plot[order(All_res_plot$Phenotype,All_res_plot$Test),]

All_res_plot$Val_Label_1<-NA
All_res_plot$Val_Label_1[!is.na(All_res_plot$R_diff)]<-paste0('Diff == ',round(All_res_plot$R_diff[!is.na(All_res_plot$R_diff)],3))

All_res_plot$Val_Label_2<-NA
All_res_plot$Val_Label_2[!is.na(All_res_plot$R_diff)]<-paste0('italic(p) == ',All_res_plot$R_diff_pval[!is.na(All_res_plot$R_diff)])

All_res_plot$Model[!All_res_plot$Model == 'All' & All_res_plot$Test == 'GeRS_multi_tissue']<-'GeRS PP4 Best Tissue   '
All_res_plot$Model[All_res_plot$Model == 'All' & All_res_plot$Test == 'GeRS_multi_tissue']<-'GeRS PP4 Multi Tissue'

All_res_plot$Model[!All_res_plot$Model == 'All' & All_res_plot$Test == 'PRS_and_GeRS']<-'PRS only   '
All_res_plot$Model[All_res_plot$Model == 'All' & All_res_plot$Test == 'PRS_and_GeRS']<-'PRS + GeRS PP4'

All_res_plot$Model<-factor(All_res_plot$Model, levels=c("GeRS PP4 Best Tissue   ","GeRS PP4 Multi Tissue","PRS only   ","PRS + GeRS PP4"))

library(ggplot2)
library(cowplot)

# Plot results
Plot_2<-ggplot(All_res_plot[All_res_plot$Test == 'GeRS_multi_tissue',], aes(x=Phenotype, y=R, fill=Model)) +
          geom_bar(stat="identity", position=position_dodge()) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'GeRS_multi_tissue',]$Val_Label_1, parse=T, vjust=-0.5, hjust=0) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'GeRS_multi_tissue',]$Val_Label_2, parse=T, vjust=1, hjust=0) +
          labs(y='Correlation', x='') +
          ylim(NA,0.65) +
          theme_half_open() +
          theme(legend.title=element_blank(),legend.position="top") +
          background_grid(major = 'x', minor = 'x') +
          coord_flip()

Plot_3<-ggplot(All_res_plot[All_res_plot$Test == 'PRS_and_GeRS',], aes(x=Phenotype, y=R, fill=Model)) +
          geom_bar(stat="identity", position=position_dodge()) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'PRS_and_GeRS',]$Val_Label_1, parse=T, vjust=-0.5, hjust=0) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'PRS_and_GeRS',]$Val_Label_2, parse=T, vjust=1, hjust=0) +
          labs(y='Correlation', x='') +
          ylim(NA,0.65) +
          theme_half_open() +
          theme(legend.title=element_blank(),legend.position="top") +
          background_grid(major = 'x', minor = 'x') +
          coord_flip()

png('/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/GeRS_PP4_tests_summary_TEDS.png', units='px', res=300, width=3500, height=1500)
  plot_grid(Plot_2,Plot_3, labels = "AUTO")
dev.off()

Plot comparison results (Tissue Specific)

#####
# Compare results from each approach
#####

pheno<-c('Height21', 'BMI21', 'GCSE', 'ADHD')
gwas<-c('HEIG03', 'BODY11', 'EDUC03', 'ADHD04')
weight=c('YFS.BLOOD.RNAARR')

res<-list()
for(i in 1:length(gwas)){
res_2<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/',pheno[i],'/Association_withGeRSs/TEDS.w_hm3.AllTissue.TissueSpecific.',gwas[i],'.EUR-GeRSs.pred_comp.txt'), header=T, stringsAsFactors=F)
res_2<-res_2[res_2$Model_1 == 'All',]
res_2<-res_2[res_2$Model_2 != 'All',]
res_3<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/',pheno[i],'/Association_withPRS_and_GeRSs/TEDS.w_hm3.AllTissue.TissueSpecific.',gwas[i],'.EUR-GeRSs.EUR-PRSs.pt_clump.pred_comp.txt'), header=T, stringsAsFactors=F)

res[[pheno[i]]]<-data.frame(Test=c('GeRS_multi_tissue','PRS_and_GeRS'),     
                        do.call(rbind,list( res_2[res_2$Model_2_R == max(res_2$Model_2_R),],
                                                    res_3[8,])))
}

res_table<-do.call(rbind, res)
res_table$Phenotype<-gsub('\\..*','',rownames(res_table))
res_table<-res_table[,c('Phenotype',names(res_table)[-length(names(res_table))])]
write.csv(res_table, '/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/GeRS_TissueSpecific_tests_summary.csv', row.names=F, quote=F)

####
# Plot the R2 when using PRS only, and using PRS + multi-tissue GeRS
####

# Organise the results
res_plot<-list()
for(i in 1:length(gwas)){
tmp_res<-res[[pheno[i]]]

tmp_res$R_diff_pval<-format(tmp_res$R_diff_pval, scientific = TRUE, digits = 2)
tmp_res$R_diff_pval<-gsub('e-','*x*10^-',tmp_res$R_diff_pval)

tmp_res_Model_1<-tmp_res[,grepl('Test|Model_1|R_diff',names(tmp_res))]
names(tmp_res_Model_1)<-c('Test','Model','R','R_diff','R_diff_pval')
tmp_res_Model_2<-tmp_res[,grepl('Test|Model_2|R_diff',names(tmp_res))]
names(tmp_res_Model_2)<-c('Test','Model','R','R_diff','R_diff_pval')
tmp_res_Model_2$R_diff<-NA
tmp_res_Model_2$R_diff_pval<-NA

tmp_res_plot<-rbind(tmp_res_Model_1,tmp_res_Model_2)
tmp_res_plot$Phenotype<-pheno[i]

res_plot[[pheno[i]]]<-tmp_res_plot
}

# Combine results for each phenotype and prepare for plotting
All_res_plot<-do.call(rbind, res_plot)

All_res_plot$Test<-factor(All_res_plot$Test, levels=res[[1]]$Test)
All_res_plot$Phenotype<-factor(All_res_plot$Phenotype, level=unique(All_res_plot$Phenotype))
All_res_plot<-All_res_plot[order(All_res_plot$Phenotype,All_res_plot$Test),]

All_res_plot$Val_Label_1<-NA
All_res_plot$Val_Label_1[!is.na(All_res_plot$R_diff)]<-paste0('Diff == ',round(All_res_plot$R_diff[!is.na(All_res_plot$R_diff)],3))

All_res_plot$Val_Label_2<-NA
All_res_plot$Val_Label_2[!is.na(All_res_plot$R_diff)]<-paste0('italic(p) == ',All_res_plot$R_diff_pval[!is.na(All_res_plot$R_diff)])

All_res_plot$Model[!All_res_plot$Model == 'All' & All_res_plot$Test == 'GeRS_multi_tissue']<-'GeRS TissueSpecific\nBest Tissue   '
All_res_plot$Model[All_res_plot$Model == 'All' & All_res_plot$Test == 'GeRS_multi_tissue']<-'GeRS TissueSpecific\nMulti Tissue'

All_res_plot$Model[!All_res_plot$Model == 'All' & All_res_plot$Test == 'PRS_and_GeRS']<-'PRS only   '
All_res_plot$Model[All_res_plot$Model == 'All' & All_res_plot$Test == 'PRS_and_GeRS']<-'PRS + GeRS TissueSpecific'

All_res_plot$Model<-factor(All_res_plot$Model, levels=c("GeRS TissueSpecific\nBest Tissue   ","GeRS TissueSpecific\nMulti Tissue","PRS only   ","PRS + GeRS TissueSpecific"))

library(ggplot2)
library(cowplot)

# Plot results
Plot_2<-ggplot(All_res_plot[All_res_plot$Test == 'GeRS_multi_tissue',], aes(x=Phenotype, y=R, fill=Model)) +
          geom_bar(stat="identity", position=position_dodge()) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'GeRS_multi_tissue',]$Val_Label_1, parse=T, vjust=-0.5, hjust=0) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'GeRS_multi_tissue',]$Val_Label_2, parse=T, vjust=1, hjust=0) +
          labs(y='Correlation', x='') +
          ylim(NA,0.65) +
          theme_half_open() +
          theme(legend.title=element_blank(),legend.position="top") +
          background_grid(major = 'x', minor = 'x') +
          coord_flip()

Plot_3<-ggplot(All_res_plot[All_res_plot$Test == 'PRS_and_GeRS',], aes(x=Phenotype, y=R, fill=Model)) +
          geom_bar(stat="identity", position=position_dodge()) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'PRS_and_GeRS',]$Val_Label_1, parse=T, vjust=-0.5, hjust=0) +
          geom_text(aes(y=R+0.04), label=All_res_plot[All_res_plot$Test == 'PRS_and_GeRS',]$Val_Label_2, parse=T, vjust=1, hjust=0) +
          labs(y='Correlation', x='') +
          ylim(NA,0.65) +
          theme_half_open() +
          theme(legend.title=element_blank(),legend.position="top") +
          background_grid(major = 'x', minor = 'x') +
          coord_flip()

png('/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/GeRS_TissueSpecific_tests_summary_TEDS.png', units='px', res=300, width=3500, height=1500)
  plot_grid(Plot_2,Plot_3, labels = "AUTO")
dev.off()

Compare stratified PRS to multi-tissue GeRS

# Plot the results of the stratified PRS against Multi-tissue GeRS
# And look at the variance exaplained by each tissue
pheno<-c('Height21', 'BMI21', 'GCSE', 'ADHD')
pheno_label<-c('Height', 'BMI', 'GCSE', 'ADHD')
gwas<-c('HEIG03', 'BODY11', 'EDUC03', 'ADHD04')

res<-list()
crossTissue<-list()

for(i in 1:length(gwas)){
res_GeRS<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/',pheno[i],'/Association_withGeRSs/TEDS.w_hm3.AllTissue.',gwas[i],'.EUR-GeRSs.pred_eval.txt'), header=T, stringsAsFactors=F)

res_GeRS<-res_GeRS[dim(res_GeRS)[1],]

res_GeRS_coloc<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/',pheno[i],'/Association_withGeRSs/TEDS.w_hm3.AllTissue.',gwas[i],'.EUR-GeRSs_pT_withColoc.pred_eval.txt'), header=T, stringsAsFactors=F)

res_GeRS_coloc<-res_GeRS_coloc[dim(res_GeRS_coloc)[1],]

res_stratPRS<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/',pheno[i],'/Association_withPRSs/TEDS.w_hm3.',gwas[i],'.EUR-PRSs-TWAS_gene_stratified.pred_eval.txt'), header=T, stringsAsFactors=F)

res_stratPRS<-res_stratPRS[2,]

res_GWPRS<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/',pheno[i],'/Association_withPRSs/TEDS.w_hm3.',gwas[i],'.EUR-PRSs.pred_eval.txt'), header=T, stringsAsFactors=F)
res_GWPRS<-res_GWPRS[dim(res_GWPRS)[1],]

res_all<-do.call(rbind, list(res_GeRS,res_GeRS_coloc, res_stratPRS, res_GWPRS))
res_all$Method<-c('GeRS',"GeRS (coloc)",'PRS (Gene)','PRS')
res_all$Phenotype<-pheno_label[i]

res_all<-res_all[,c('Model','R','SE','P','N','Method','Phenotype')]

res[[pheno[i]]]<-res_all
}

res_table<-do.call(rbind, res)
res_table<-res_table[,c('Phenotype','Method','R','SE')]

write.csv(res_table, '/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/StratPRS_comp_summary.csv', row.names=F, quote=F)

library(ggplot2)
library(cowplot)
# Plot comparison across PRS, stratified PRS and GeRS
res_table$Phenotype<-factor(res_table$Phenotype, level=unique(res_table$Phenotype))

png('/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/StratPRS_comp_TEDS.png', units='px', res=300, width=1500, height=1000)

ggplot(res_table, aes(x=Phenotype, y=R, fill=Method)) +
          geom_bar(stat="identity", position=position_dodge(0.9)) +
          geom_errorbar(aes(ymin=R-SE, ymax=R+SE), width=.2,
                 position=position_dodge(0.9)) +
          labs(y="Correlation (SE)", x='') +
              ylim(NA,0.41) +
          theme_half_open() +
          theme(axis.text.x = element_text(angle = 45, hjust = 1), legend.position="top", legend.justification = c(0.5, 0), legend.title=element_blank()) +
          guides(fill=guide_legend(title.hjust =0.5)) +
          background_grid(major = 'y', minor = 'y')

dev.off()

Compare GeRS to PP4 and TissueSpecific GeRS

# Plot the results of the stratified PRS against Multi-tissue GeRS
# And look at the variance exaplained by each tissue
pheno<-c('Height21', 'BMI21', 'GCSE', 'ADHD')
pheno_label<-c('Height', 'BMI', 'GCSE', 'ADHD')
gwas<-c('HEIG03', 'BODY11', 'EDUC03', 'ADHD04')

res<-list()
crossTissue<-list()

for(i in 1:length(gwas)){
res_GeRS<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/',pheno[i],'/Association_withGeRSs/TEDS.w_hm3.AllTissue.',gwas[i],'.EUR-GeRSs.pred_eval.txt'), header=T, stringsAsFactors=F)

res_GeRS_all<-res_GeRS[dim(res_GeRS)[1],]
res_GeRS<-res_GeRS[-dim(res_GeRS)[1],]
res_GeRS_best<-res_GeRS[which(res_GeRS$R == max(res_GeRS$R)),]

res_GeRS_coloc<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/',pheno[i],'/Association_withGeRSs/TEDS.w_hm3.AllTissue.',gwas[i],'.EUR-GeRSs_pT_withColoc.pred_eval.txt'), header=T, stringsAsFactors=F)

res_GeRS_coloc_all<-res_GeRS_coloc[dim(res_GeRS_coloc)[1],]
res_GeRS_coloc<-res_GeRS_coloc[-dim(res_GeRS_coloc)[1],]
res_GeRS_coloc_best<-res_GeRS_coloc[which(res_GeRS_coloc$R == max(res_GeRS_coloc$R)),]

res_GeRS_TS<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/',pheno[i],'/Association_withGeRSs/TEDS.w_hm3.AllTissue.TissueSpecific.',gwas[i],'.EUR-GeRSs.pred_eval.txt'), header=T, stringsAsFactors=F)

res_GeRS_TS_all<-res_GeRS_TS[dim(res_GeRS_TS)[1],]
res_GeRS_TS<-res_GeRS_TS[-dim(res_GeRS_TS)[1],]
res_GeRS_TS_best<-res_GeRS_TS[which(res_GeRS_TS$R == max(res_GeRS_TS$R)),]

res_all<-do.call(rbind, list(res_GeRS_best,res_GeRS_all,res_GeRS_coloc_best,res_GeRS_coloc_all,res_GeRS_TS_best, res_GeRS_TS_all))
res_all$Method<-c("GeRS (best)","GeRS (all)","GeRS coloc (best)","GeRS coloc (all)","GeRS TS (best)","GeRS TS (all)")

res_all$Phenotype<-pheno_label[i]

res_all<-res_all[,c('Model','R','SE','P','N','Method','Phenotype')]

res[[pheno[i]]]<-res_all
}

res_table<-do.call(rbind, res)
res_table<-res_table[,c('Phenotype','Method','R','SE')]

write.csv(res_table, '/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/GeRS_coloc_TissueSpecific_comp_summary.csv', row.names=F, quote=F)

library(ggplot2)
library(cowplot)
# Plot comparison across GeRS
res_table$Phenotype<-factor(res_table$Phenotype, level=unique(res_table$Phenotype))

res_table$Method<-factor(res_table$Method, levels=c("GeRS (best)","GeRS (all)","GeRS coloc (best)","GeRS coloc (all)","GeRS TS (best)","GeRS TS (all)"))
  
png('/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/GeRS_coloc_TissueSpecific_comp_TEDS.png', units='px', res=300, width=2000, height=1000)

ggplot(res_table, aes(x=Phenotype, y=R, fill=Method)) +
          geom_bar(stat="identity", position=position_dodge(0.9)) +
          geom_errorbar(aes(ymin=R-SE, ymax=R+SE), width=.2,
                 position=position_dodge(0.9)) +
          labs(y="Correlation (SE)", x='') +
              ylim(0,0.3) +
          theme_half_open() +
          theme(axis.text.x = element_text(angle = 45, hjust = 1), legend.position="top", legend.justification = c(0.5, 0), legend.title=element_blank()) +
          guides(fill=guide_legend(title.hjust =0.5)) +
          background_grid(major = 'y', minor = 'y')

dev.off()

Plot GeRS across tissues

pheno<-c('Height21', 'BMI21', 'GCSE', 'ADHD')
pheno_label<-c('Height', 'BMI', 'GCSE', 'ADHD')
gwas<-c('HEIG03', 'BODY11', 'EDUC03', 'ADHD04')

crossTissue<-list()

for(i in 1:length(gwas)){
res_GeRS<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/',pheno[i],'/Association_withGeRSs/TEDS.w_hm3.AllTissue.',gwas[i],'.EUR-GeRSs.pred_eval.txt'), header=T, stringsAsFactors=F)


crossTissue_i<-res_GeRS

crossTissue_i$Phenotype<-pheno_label[i]

crossTissue_i<-crossTissue_i[,c('Phenotype','Model','R','SE','P')]

crossTissue_i$Model<-gsub('_group','',crossTissue_i$Model)
crossTissue_i$Panel<-crossTissue_i$Model

crossTissue_i$Model<-gsub('CMC.BRAIN.RNASEQ','CMC DLPFC',crossTissue_i$Model)
crossTissue_i$Model<-gsub('SPLICING','Splicing',crossTissue_i$Model)
crossTissue_i$Model<-gsub('NTR.BLOOD.RNAARR','NTR Blood',crossTissue_i$Model)
crossTissue_i$Model<-gsub('YFS.BLOOD.RNAARR','YFS Blood',crossTissue_i$Model)
crossTissue_i$Model<-gsub('METSIM.ADIPOSE.RNASEQ','METSIM Adipose',crossTissue_i$Model)
crossTissue_i$Model<-gsub('\\.',' ',crossTissue_i$Model)
crossTissue_i$Model[!grepl('CMC|NTR|YFS|METSIM|All', crossTissue_i$Model)]<-paste0('GTEx ',crossTissue_i$Model[!grepl('CMC|NTR|YFS|METSIM|All', crossTissue_i$Model)])
crossTissue_i$Model<-gsub('Brain', '', crossTissue_i$Model)
crossTissue_i$Model <- gsub('Anterior cingulate cortex', 'ACC', crossTissue_i$Model)
crossTissue_i$Model <- gsub('basal ganglia', '', crossTissue_i$Model)
crossTissue_i$Model <- gsub('BA9', '', crossTissue_i$Model)
crossTissue_i$Model <- gsub('BA24', '', crossTissue_i$Model)
crossTissue_i$Model <- gsub('  ', ' ', crossTissue_i$Model)
crossTissue_i$Model_short<-substr(crossTissue_i$Model, start = 1, stop = 18)  #start the name at the first character and stop at the 25th
crossTissue_i$Model_short[nchar(crossTissue_i$Model) > 18]<-paste0(crossTissue_i$Model_short[nchar(crossTissue_i$Model) > 18], "...")

crossTissue_i$R_scaled<-scale(crossTissue_i$R)

crossTissue[[pheno[i]]]<-crossTissue_i

}

crossTissue_table<-do.call(rbind, crossTissue)
crossTissue_table<-crossTissue_table[,c('Phenotype','Model','Model_short','R','SE','Panel','R_scaled')]

library(ggplot2)
library(cowplot)

plot_list<-list()
for(i in 1:length(gwas)){
  tmp<-crossTissue[[pheno[i]]]
  tmp$Model_short<-factor(tmp$Model_short, level=tmp$Model_short[rev(order(tmp$R))])
  tmp$Colour<-ifelse(tmp$Model_short == 'All', 'All', 'Single')

plot_list[[pheno[i]]]<-ggplot(tmp, aes(x=Model_short, y=R, fill=Colour)) +
          geom_bar(stat="identity", position=position_dodge(0.9)) +
          geom_errorbar(aes(ymin=R-SE, ymax=R+SE), width=.2,
                 position=position_dodge(0.9)) +
          labs(y="Correlation (SE)", x='', title=pheno_label[i]) +
          theme_half_open() +
          theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust=0.5, size=10), legend.position = "none") +
          background_grid(major = 'y', minor = 'y')
}

png('/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/GeRS_Tissue_comp_TEDS.png', units='px', res=300, width=3000, height=4000)
  plot_grid(plotlist=plot_list, ncol=1)
dev.off()

# Estimate the correlation between SNP-weight set sample size, number of features and predictive utility
weight_info<-fread('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/snp_weights_table.csv')
weight_info$Set<-gsub('_','.',weight_info$Set)
weight_info$Set<-gsub('-','.',weight_info$Set)

crossTissue_table<-merge(crossTissue_table, weight_info, by.x='Panel', by.y='Set')

# Check correlation across 
cor(crossTissue_table$R, crossTissue_table$N_indiv) # 0.1516963
feat_cor<-cor(crossTissue_table$R, crossTissue_table$N_feat) # 0.2879782
cor(crossTissue_table$N_indiv, crossTissue_table$N_feat) # 0.3263912

summary(lm(R ~ N_feat + N_indiv, data=crossTissue_table)) # R2 = 0.08666
# N_indiv effect is non significant when moddeling N_feat
crossTissue_table$R_resid<-resid(lm(R ~ N_feat, data=crossTissue_table))

plot_list<-list()
for(i in 1:length(gwas)){
  crossTissue_table$R_resid[crossTissue_table$Phenotype == pheno_label[i]]<-scale(crossTissue_table$R_resid[crossTissue_table$Phenotype == pheno_label[i]])
  tmp<-crossTissue_table[crossTissue_table$Phenotype == pheno_label[i],]
  tmp$Model_short<-factor(tmp$Model_short, level=tmp$Model_short[rev(order(tmp$R_resid))])
  tmp$Colour<-ifelse(tmp$Model_short == 'All', 'All', 'Single')

plot_list[[pheno[i]]]<-ggplot(tmp, aes(x=Model_short, y=R_resid, fill=Colour)) +
          geom_bar(stat="identity", position=position_dodge(0.9)) +
          labs(y="Residual Correlation", x='', title=pheno_label[i]) +
          theme_half_open() +
          theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust=0.5, size=10), legend.position = "none") +
          background_grid(major = 'y', minor = 'y')
}

png('/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/GeRS_Tissue_comp_resid_TEDS.png', units='px', res=300, width=3000, height=4000)
  plot_grid(plotlist=plot_list, ncol=1)
dev.off()

# Plot relationship between N_feat and R2 scaled for each phenotype
png('/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/GeRS_Tissue_comp_Nfeat_TEDS.png', units='px', res=300, width=1500, height=1000)
ggplot(crossTissue_table, aes(x=N_feat, R_scaled)) +
  labs(y="Relative prediction", x='Number of features') +
  geom_smooth(method='lm') +
  annotate("text", x=7500, y=-2, label = paste0("italic('r') == ",round(feat_cor,2)), parse=T) +
  geom_point(data=crossTissue_table, aes(x=N_feat, R_scaled, colour=Phenotype)) +
  theme_half_open()
dev.off()

Plot GeRS (PP4+clump) across tissues

pheno<-c('Height21', 'BMI21', 'GCSE', 'ADHD')
pheno_label<-c('Height', 'BMI', 'GCSE', 'ADHD')
gwas<-c('HEIG03', 'BODY11', 'EDUC03', 'ADHD04')

crossTissue<-list()

for(i in 1:length(gwas)){
res_GeRS<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/',pheno[i],'/Association_withGeRSs/TEDS.w_hm3.AllTissue.',gwas[i],'.EUR-GeRSs_PP4.pred_eval.txt'), header=T, stringsAsFactors=F)

crossTissue_i<-res_GeRS

crossTissue_i$Phenotype<-pheno_label[i]

crossTissue_i<-crossTissue_i[,c('Phenotype','Model','R','SE','P')]

crossTissue_i$Model<-gsub('_group','',crossTissue_i$Model)
crossTissue_i$Panel<-crossTissue_i$Model

crossTissue_i$Model<-gsub('CMC.BRAIN.RNASEQ','CMC DLPFC',crossTissue_i$Model)
crossTissue_i$Model<-gsub('SPLICING','Splicing',crossTissue_i$Model)
crossTissue_i$Model<-gsub('NTR.BLOOD.RNAARR','NTR Blood',crossTissue_i$Model)
crossTissue_i$Model<-gsub('YFS.BLOOD.RNAARR','YFS Blood',crossTissue_i$Model)
crossTissue_i$Model<-gsub('METSIM.ADIPOSE.RNASEQ','METSIM Adipose',crossTissue_i$Model)
crossTissue_i$Model<-gsub('\\.',' ',crossTissue_i$Model)
crossTissue_i$Model[!grepl('CMC|NTR|YFS|METSIM|All', crossTissue_i$Model)]<-paste0('GTEx ',crossTissue_i$Model[!grepl('CMC|NTR|YFS|METSIM|All', crossTissue_i$Model)])
crossTissue_i$Model<-gsub('Brain', '', crossTissue_i$Model)
crossTissue_i$Model <- gsub('Anterior cingulate cortex', 'ACC', crossTissue_i$Model)
crossTissue_i$Model <- gsub('basal ganglia', '', crossTissue_i$Model)
crossTissue_i$Model <- gsub('BA9', '', crossTissue_i$Model)
crossTissue_i$Model <- gsub('BA24', '', crossTissue_i$Model)
crossTissue_i$Model <- gsub('  ', ' ', crossTissue_i$Model)
crossTissue_i$Model_short<-substr(crossTissue_i$Model, start = 1, stop = 18)  #start the name at the first character and stop at the 25th
crossTissue_i$Model_short[nchar(crossTissue_i$Model) > 18]<-paste0(crossTissue_i$Model_short[nchar(crossTissue_i$Model) > 18], "...")

crossTissue[[pheno[i]]]<-crossTissue_i

}

crossTissue_table<-do.call(rbind, crossTissue)
crossTissue_table<-crossTissue_table[,c('Phenotype','Model','Model_short','R','SE','Panel')]

library(ggplot2)
library(cowplot)

plot_list<-list()
for(i in 1:length(gwas)){
  tmp<-crossTissue[[pheno[i]]]
  tmp$Model_short<-factor(tmp$Model_short, level=tmp$Model_short[rev(order(tmp$R))])
  tmp$Colour<-ifelse(tmp$Model_short == 'All', 'All', 'Single')

plot_list[[pheno[i]]]<-ggplot(tmp, aes(x=Model_short, y=R, fill=Colour)) +
          geom_bar(stat="identity", position=position_dodge(0.9)) +
          geom_errorbar(aes(ymin=R-SE, ymax=R+SE), width=.2,
                 position=position_dodge(0.9)) +
          labs(y="Correlation (SE)", x='', title=pheno_label[i]) +
          theme_half_open() +
          theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust=0.5, size=10), legend.position = "none") +
          background_grid(major = 'y', minor = 'y')
}

png('/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/GeRS_PP4_Tissue_comp_TEDS.png', units='px', res=300, width=3000, height=4000)
  plot_grid(plotlist=plot_list, ncol=1)
dev.off()

# Estimate the correlation between SNP-weight set sample size, number of features and predictive utility
weight_info<-fread('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/snp_weights_table.csv')
weight_info$Set<-gsub('_','.',weight_info$Set)
weight_info$Set<-gsub('-','.',weight_info$Set)

crossTissue_table<-merge(crossTissue_table, weight_info, by.x='Panel', by.y='Set')

# Check correlation across 
cor(crossTissue_table$R, crossTissue_table$N_indiv) # 0.1086192
cor(crossTissue_table$R, crossTissue_table$N_feat) # 0.2683005
cor(crossTissue_table$N_indiv, crossTissue_table$N_feat) # 0.3263912

summary(lm(R ~ N_feat + N_indiv, data=crossTissue_table)) # R2 = 0.07248
crossTissue_table$R_resid<-resid(lm(R ~ N_feat + N_indiv, data=crossTissue_table))

Plot GeRS (TissueSpecific) across tissues

pheno<-c('Height21', 'BMI21', 'GCSE', 'ADHD')
pheno_label<-c('Height', 'BMI', 'GCSE', 'ADHD')
gwas<-c('HEIG03', 'BODY11', 'EDUC03', 'ADHD04')

crossTissue<-list()

for(i in 1:length(gwas)){
res_GeRS<-read.table(paste0('/users/k1806347/brc_scratch/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/',pheno[i],'/Association_withGeRSs/TEDS.w_hm3.AllTissue.TissueSpecific.',gwas[i],'.EUR-GeRSs.pred_eval.txt'), header=T, stringsAsFactors=F)

crossTissue_i<-res_GeRS

crossTissue_i$Phenotype<-pheno_label[i]

crossTissue_i<-crossTissue_i[,c('Phenotype','Model','R','SE','P')]

crossTissue_i$Model<-gsub('_group','',crossTissue_i$Model)

crossTissue_i$Model<-gsub('CMC.BRAIN.RNASEQ','CMC DLPFC',crossTissue_i$Model)
crossTissue_i$Model<-gsub('SPLICING','Splicing',crossTissue_i$Model)
crossTissue_i$Model<-gsub('NTR.BLOOD.RNAARR','NTR Blood',crossTissue_i$Model)
crossTissue_i$Model<-gsub('YFS.BLOOD.RNAARR','YFS Blood',crossTissue_i$Model)
crossTissue_i$Model<-gsub('METSIM.ADIPOSE.RNASEQ','METSIM Adipose',crossTissue_i$Model)
crossTissue_i$Model<-gsub('\\.',' ',crossTissue_i$Model)
crossTissue_i$Model[!grepl('CMC|NTR|YFS|METSIM|All', crossTissue_i$Model)]<-paste0('GTEx ',crossTissue_i$Model[!grepl('CMC|NTR|YFS|METSIM|All', crossTissue_i$Model)])
crossTissue_i$Model<-gsub('Brain', '', crossTissue_i$Model)
crossTissue_i$Model <- gsub('Anterior cingulate cortex', 'ACC', crossTissue_i$Model)
crossTissue_i$Model <- gsub('basal ganglia', '', crossTissue_i$Model)
crossTissue_i$Model <- gsub('BA9', '', crossTissue_i$Model)
crossTissue_i$Model <- gsub('BA24', '', crossTissue_i$Model)
crossTissue_i$Model <- gsub('  ', ' ', crossTissue_i$Model)
crossTissue_i$Model_short<-substr(crossTissue_i$Model, start = 1, stop = 18)  #start the name at the first character and stop at the 25th
crossTissue_i$Model_short[nchar(crossTissue_i$Model) > 18]<-paste0(crossTissue_i$Model_short[nchar(crossTissue_i$Model) > 18], "...")

crossTissue[[pheno[i]]]<-crossTissue_i

}

crossTissue_table<-do.call(rbind, crossTissue)
crossTissue_table<-crossTissue_table[,c('Phenotype','Model','Model_short','R','SE')]

library(ggplot2)
library(cowplot)

plot_list<-list()
for(i in 1:length(gwas)){
  tmp<-crossTissue[[pheno[i]]]
  tmp$Model_short<-factor(tmp$Model_short, level=tmp$Model_short[rev(order(tmp$R))])
  tmp$Colour<-ifelse(tmp$Model_short == 'All', 'All', 'Single')

plot_list[[pheno[i]]]<-ggplot(tmp, aes(x=Model_short, y=R, fill=Colour)) +
          geom_bar(stat="identity", position=position_dodge(0.9)) +
          geom_errorbar(aes(ymin=R-SE, ymax=R+SE), width=.2,
                 position=position_dodge(0.9)) +
          labs(y="Correlation (SE)", x='', title=pheno_label[i]) +
          theme_half_open() +
          theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust=0.5, size=10), legend.position = "none") +
          background_grid(major = 'y', minor = 'y')
}

png('/mnt/lustre/users/k1806347/Analyses/GeRS_comparison/TEDS_outcomes_for_prediction/GeRS_TissueSpecific_Tissue_comp_TEDS.png', units='px', res=300, width=3000, height=4000)
  plot_grid(plotlist=plot_list, ncol=1)
dev.off()

Show GeRS prediction across p-value thresholds

Predictive utility: R2

Predictive utility: R2

Predictive utility:R

Predictive utility:R

Correlation between GeRS model predictions and observed values in TEDS
Phenotype Weight Model R (SE)
Height21 Adipose_Subcutaneous 1e.06 0.152 (0.013)
Height21 Adipose_Subcutaneous 1e.05 0.16 (0.013)
Height21 Adipose_Subcutaneous 1e.04 0.171 (0.013)
Height21 Adipose_Subcutaneous 0.001 0.186 (0.013)
Height21 Adipose_Subcutaneous 0.01 0.198 (0.013)
Height21 Adipose_Subcutaneous 0.05 0.205 (0.013)
Height21 Adipose_Subcutaneous 0.1 0.207 (0.013)
Height21 Adipose_Subcutaneous 0.5 0.211 (0.013)
Height21 Adipose_Subcutaneous 1 0.211 (0.013)
Height21 Adipose_Subcutaneous All 0.209 (0.013)
Height21 Adipose_Visceral_Omentum 1e.06 0.145 (0.013)
Height21 Adipose_Visceral_Omentum 1e.05 0.151 (0.013)
Height21 Adipose_Visceral_Omentum 1e.04 0.159 (0.013)
Height21 Adipose_Visceral_Omentum 0.001 0.176 (0.013)
Height21 Adipose_Visceral_Omentum 0.01 0.187 (0.013)
Height21 Adipose_Visceral_Omentum 0.05 0.193 (0.013)
Height21 Adipose_Visceral_Omentum 0.1 0.196 (0.013)
Height21 Adipose_Visceral_Omentum 0.5 0.192 (0.013)
Height21 Adipose_Visceral_Omentum 1 0.192 (0.013)
Height21 Adipose_Visceral_Omentum All 0.193 (0.013)
Height21 Adrenal_Gland 1e.06 0.125 (0.013)
Height21 Adrenal_Gland 1e.05 0.135 (0.013)
Height21 Adrenal_Gland 1e.04 0.145 (0.013)
Height21 Adrenal_Gland 0.001 0.15 (0.013)
Height21 Adrenal_Gland 0.01 0.149 (0.013)
Height21 Adrenal_Gland 0.05 0.16 (0.013)
Height21 Adrenal_Gland 0.1 0.161 (0.013)
Height21 Adrenal_Gland 0.5 0.159 (0.013)
Height21 Adrenal_Gland 1 0.16 (0.013)
Height21 Adrenal_Gland All 0.161 (0.013)
Height21 Artery_Aorta 1e.06 0.134 (0.013)
Height21 Artery_Aorta 1e.05 0.143 (0.013)
Height21 Artery_Aorta 1e.04 0.153 (0.013)
Height21 Artery_Aorta 0.001 0.165 (0.013)
Height21 Artery_Aorta 0.01 0.179 (0.013)
Height21 Artery_Aorta 0.05 0.188 (0.013)
Height21 Artery_Aorta 0.1 0.191 (0.013)
Height21 Artery_Aorta 0.5 0.19 (0.013)
Height21 Artery_Aorta 1 0.191 (0.013)
Height21 Artery_Aorta All 0.193 (0.013)
Height21 Artery_Coronary 1e.06 0.104 (0.013)
Height21 Artery_Coronary 1e.05 0.115 (0.013)
Height21 Artery_Coronary 1e.04 0.123 (0.013)
Height21 Artery_Coronary 0.001 0.132 (0.013)
Height21 Artery_Coronary 0.01 0.141 (0.013)
Height21 Artery_Coronary 0.05 0.147 (0.013)
Height21 Artery_Coronary 0.1 0.147 (0.013)
Height21 Artery_Coronary 0.5 0.149 (0.013)
Height21 Artery_Coronary 1 0.149 (0.013)
Height21 Artery_Coronary All 0.146 (0.013)
Height21 Artery_Tibial 1e.06 0.155 (0.013)
Height21 Artery_Tibial 1e.05 0.164 (0.013)
Height21 Artery_Tibial 1e.04 0.171 (0.013)
Height21 Artery_Tibial 0.001 0.181 (0.013)
Height21 Artery_Tibial 0.01 0.189 (0.013)
Height21 Artery_Tibial 0.05 0.2 (0.013)
Height21 Artery_Tibial 0.1 0.204 (0.013)
Height21 Artery_Tibial 0.5 0.207 (0.013)
Height21 Artery_Tibial 1 0.207 (0.013)
Height21 Artery_Tibial All 0.204 (0.013)
Height21 Brain_Amygdala 1e.06 0.094 (0.013)
Height21 Brain_Amygdala 1e.05 0.094 (0.013)
Height21 Brain_Amygdala 1e.04 0.103 (0.013)
Height21 Brain_Amygdala 0.001 0.108 (0.013)
Height21 Brain_Amygdala 0.01 0.117 (0.013)
Height21 Brain_Amygdala 0.05 0.118 (0.013)
Height21 Brain_Amygdala 0.1 0.122 (0.013)
Height21 Brain_Amygdala 0.5 0.126 (0.013)
Height21 Brain_Amygdala 1 0.127 (0.013)
Height21 Brain_Amygdala All 0.123 (0.013)
Height21 Brain_Anterior_cingulate_cortex_BA24 1e.06 0.079 (0.013)
Height21 Brain_Anterior_cingulate_cortex_BA24 1e.05 0.079 (0.013)
Height21 Brain_Anterior_cingulate_cortex_BA24 1e.04 0.077 (0.014)
Height21 Brain_Anterior_cingulate_cortex_BA24 0.001 0.087 (0.013)
Height21 Brain_Anterior_cingulate_cortex_BA24 0.01 0.096 (0.013)
Height21 Brain_Anterior_cingulate_cortex_BA24 0.05 0.102 (0.013)
Height21 Brain_Anterior_cingulate_cortex_BA24 0.1 0.105 (0.013)
Height21 Brain_Anterior_cingulate_cortex_BA24 0.5 0.108 (0.013)
Height21 Brain_Anterior_cingulate_cortex_BA24 1 0.108 (0.013)
Height21 Brain_Anterior_cingulate_cortex_BA24 All 0.103 (0.013)
Height21 Brain_Caudate_basal_ganglia 1e.06 0.092 (0.013)
Height21 Brain_Caudate_basal_ganglia 1e.05 0.091 (0.013)
Height21 Brain_Caudate_basal_ganglia 1e.04 0.095 (0.013)
Height21 Brain_Caudate_basal_ganglia 0.001 0.099 (0.013)
Height21 Brain_Caudate_basal_ganglia 0.01 0.112 (0.013)
Height21 Brain_Caudate_basal_ganglia 0.05 0.118 (0.013)
Height21 Brain_Caudate_basal_ganglia 0.1 0.119 (0.013)
Height21 Brain_Caudate_basal_ganglia 0.5 0.123 (0.013)
Height21 Brain_Caudate_basal_ganglia 1 0.123 (0.013)
Height21 Brain_Caudate_basal_ganglia All 0.119 (0.013)
Height21 Brain_Cerebellar_Hemisphere 1e.06 0.116 (0.013)
Height21 Brain_Cerebellar_Hemisphere 1e.05 0.119 (0.013)
Height21 Brain_Cerebellar_Hemisphere 1e.04 0.127 (0.013)
Height21 Brain_Cerebellar_Hemisphere 0.001 0.137 (0.013)
Height21 Brain_Cerebellar_Hemisphere 0.01 0.151 (0.013)
Height21 Brain_Cerebellar_Hemisphere 0.05 0.147 (0.013)
Height21 Brain_Cerebellar_Hemisphere 0.1 0.147 (0.013)
Height21 Brain_Cerebellar_Hemisphere 0.5 0.147 (0.013)
Height21 Brain_Cerebellar_Hemisphere 1 0.148 (0.013)
Height21 Brain_Cerebellar_Hemisphere All 0.15 (0.013)
Height21 Brain_Cerebellum 1e.06 0.122 (0.013)
Height21 Brain_Cerebellum 1e.05 0.131 (0.013)
Height21 Brain_Cerebellum 1e.04 0.137 (0.013)
Height21 Brain_Cerebellum 0.001 0.147 (0.013)
Height21 Brain_Cerebellum 0.01 0.16 (0.013)
Height21 Brain_Cerebellum 0.05 0.163 (0.013)
Height21 Brain_Cerebellum 0.1 0.163 (0.013)
Height21 Brain_Cerebellum 0.5 0.164 (0.013)
Height21 Brain_Cerebellum 1 0.162 (0.013)
Height21 Brain_Cerebellum All 0.162 (0.013)
Height21 Brain_Cortex 1e.06 0.111 (0.013)
Height21 Brain_Cortex 1e.05 0.12 (0.013)
Height21 Brain_Cortex 1e.04 0.125 (0.013)
Height21 Brain_Cortex 0.001 0.131 (0.013)
Height21 Brain_Cortex 0.01 0.135 (0.013)
Height21 Brain_Cortex 0.05 0.135 (0.013)
Height21 Brain_Cortex 0.1 0.134 (0.013)
Height21 Brain_Cortex 0.5 0.139 (0.013)
Height21 Brain_Cortex 1 0.14 (0.013)
Height21 Brain_Cortex All 0.137 (0.013)
Height21 Brain_Frontal_Cortex_BA9 1e.06 0.09 (0.013)
Height21 Brain_Frontal_Cortex_BA9 1e.05 0.099 (0.013)
Height21 Brain_Frontal_Cortex_BA9 1e.04 0.1 (0.013)
Height21 Brain_Frontal_Cortex_BA9 0.001 0.107 (0.013)
Height21 Brain_Frontal_Cortex_BA9 0.01 0.114 (0.013)
Height21 Brain_Frontal_Cortex_BA9 0.05 0.121 (0.013)
Height21 Brain_Frontal_Cortex_BA9 0.1 0.125 (0.013)
Height21 Brain_Frontal_Cortex_BA9 0.5 0.131 (0.013)
Height21 Brain_Frontal_Cortex_BA9 1 0.131 (0.013)
Height21 Brain_Frontal_Cortex_BA9 All 0.126 (0.013)
Height21 Brain_Hippocampus 1e.06 0.065 (0.014)
Height21 Brain_Hippocampus 1e.05 0.069 (0.014)
Height21 Brain_Hippocampus 1e.04 0.077 (0.014)
Height21 Brain_Hippocampus 0.001 0.086 (0.013)
Height21 Brain_Hippocampus 0.01 0.099 (0.013)
Height21 Brain_Hippocampus 0.05 0.101 (0.013)
Height21 Brain_Hippocampus 0.1 0.103 (0.013)
Height21 Brain_Hippocampus 0.5 0.106 (0.013)
Height21 Brain_Hippocampus 1 0.105 (0.013)
Height21 Brain_Hippocampus All 0.1 (0.013)
Height21 Brain_Hypothalamus 1e.06 0.078 (0.014)
Height21 Brain_Hypothalamus 1e.05 0.087 (0.013)
Height21 Brain_Hypothalamus 1e.04 0.086 (0.013)
Height21 Brain_Hypothalamus 0.001 0.09 (0.013)
Height21 Brain_Hypothalamus 0.01 0.096 (0.013)
Height21 Brain_Hypothalamus 0.05 0.109 (0.013)
Height21 Brain_Hypothalamus 0.1 0.11 (0.013)
Height21 Brain_Hypothalamus 0.5 0.105 (0.013)
Height21 Brain_Hypothalamus 1 0.105 (0.013)
Height21 Brain_Hypothalamus All 0.106 (0.013)
Height21 Brain_Nucleus_accumbens_basal_ganglia 1e.06 0.086 (0.013)
Height21 Brain_Nucleus_accumbens_basal_ganglia 1e.05 0.095 (0.013)
Height21 Brain_Nucleus_accumbens_basal_ganglia 1e.04 0.095 (0.013)
Height21 Brain_Nucleus_accumbens_basal_ganglia 0.001 0.102 (0.013)
Height21 Brain_Nucleus_accumbens_basal_ganglia 0.01 0.116 (0.013)
Height21 Brain_Nucleus_accumbens_basal_ganglia 0.05 0.119 (0.013)
Height21 Brain_Nucleus_accumbens_basal_ganglia 0.1 0.123 (0.013)
Height21 Brain_Nucleus_accumbens_basal_ganglia 0.5 0.122 (0.013)
Height21 Brain_Nucleus_accumbens_basal_ganglia 1 0.121 (0.013)
Height21 Brain_Nucleus_accumbens_basal_ganglia All 0.12 (0.013)
Height21 Brain_Putamen_basal_ganglia 1e.06 0.09 (0.013)
Height21 Brain_Putamen_basal_ganglia 1e.05 0.094 (0.013)
Height21 Brain_Putamen_basal_ganglia 1e.04 0.094 (0.013)
Height21 Brain_Putamen_basal_ganglia 0.001 0.105 (0.013)
Height21 Brain_Putamen_basal_ganglia 0.01 0.109 (0.013)
Height21 Brain_Putamen_basal_ganglia 0.05 0.112 (0.013)
Height21 Brain_Putamen_basal_ganglia 0.1 0.118 (0.013)
Height21 Brain_Putamen_basal_ganglia 0.5 0.116 (0.013)
Height21 Brain_Putamen_basal_ganglia 1 0.116 (0.013)
Height21 Brain_Putamen_basal_ganglia All 0.115 (0.013)
Height21 Brain_Spinal_cord_cervical_c-1 1e.06 0.073 (0.014)
Height21 Brain_Spinal_cord_cervical_c-1 1e.05 0.076 (0.014)
Height21 Brain_Spinal_cord_cervical_c-1 1e.04 0.078 (0.014)
Height21 Brain_Spinal_cord_cervical_c-1 0.001 0.086 (0.013)
Height21 Brain_Spinal_cord_cervical_c-1 0.01 0.092 (0.013)
Height21 Brain_Spinal_cord_cervical_c-1 0.05 0.097 (0.013)
Height21 Brain_Spinal_cord_cervical_c-1 0.1 0.099 (0.013)
Height21 Brain_Spinal_cord_cervical_c-1 0.5 0.105 (0.013)
Height21 Brain_Spinal_cord_cervical_c-1 1 0.106 (0.013)
Height21 Brain_Spinal_cord_cervical_c-1 All 0.104 (0.013)
Height21 Brain_Substantia_nigra 1e.06 0.088 (0.013)
Height21 Brain_Substantia_nigra 1e.05 0.091 (0.013)
Height21 Brain_Substantia_nigra 1e.04 0.091 (0.013)
Height21 Brain_Substantia_nigra 0.001 0.092 (0.013)
Height21 Brain_Substantia_nigra 0.01 0.099 (0.013)
Height21 Brain_Substantia_nigra 0.05 0.103 (0.013)
Height21 Brain_Substantia_nigra 0.1 0.104 (0.013)
Height21 Brain_Substantia_nigra 0.5 0.103 (0.013)
Height21 Brain_Substantia_nigra 1 0.102 (0.013)
Height21 Brain_Substantia_nigra All 0.102 (0.013)
Height21 Breast_Mammary_Tissue 1e.06 0.15 (0.013)
Height21 Breast_Mammary_Tissue 1e.05 0.155 (0.013)
Height21 Breast_Mammary_Tissue 1e.04 0.164 (0.013)
Height21 Breast_Mammary_Tissue 0.001 0.172 (0.013)
Height21 Breast_Mammary_Tissue 0.01 0.174 (0.013)
Height21 Breast_Mammary_Tissue 0.05 0.178 (0.013)
Height21 Breast_Mammary_Tissue 0.1 0.178 (0.013)
Height21 Breast_Mammary_Tissue 0.5 0.182 (0.013)
Height21 Breast_Mammary_Tissue 1 0.182 (0.013)
Height21 Breast_Mammary_Tissue All 0.182 (0.013)
Height21 Cells_EBV-transformed_lymphocytes 1e.06 0.109 (0.013)
Height21 Cells_EBV-transformed_lymphocytes 1e.05 0.118 (0.013)
Height21 Cells_EBV-transformed_lymphocytes 1e.04 0.12 (0.013)
Height21 Cells_EBV-transformed_lymphocytes 0.001 0.126 (0.013)
Height21 Cells_EBV-transformed_lymphocytes 0.01 0.14 (0.013)
Height21 Cells_EBV-transformed_lymphocytes 0.05 0.146 (0.013)
Height21 Cells_EBV-transformed_lymphocytes 0.1 0.147 (0.013)
Height21 Cells_EBV-transformed_lymphocytes 0.5 0.148 (0.013)
Height21 Cells_EBV-transformed_lymphocytes 1 0.147 (0.013)
Height21 Cells_EBV-transformed_lymphocytes All 0.144 (0.013)
Height21 Cells_Transformed_fibroblasts 1e.06 0.129 (0.013)
Height21 Cells_Transformed_fibroblasts 1e.05 0.137 (0.013)
Height21 Cells_Transformed_fibroblasts 1e.04 0.145 (0.013)
Height21 Cells_Transformed_fibroblasts 0.001 0.154 (0.013)
Height21 Cells_Transformed_fibroblasts 0.01 0.171 (0.013)
Height21 Cells_Transformed_fibroblasts 0.05 0.18 (0.013)
Height21 Cells_Transformed_fibroblasts 0.1 0.184 (0.013)
Height21 Cells_Transformed_fibroblasts 0.5 0.189 (0.013)
Height21 Cells_Transformed_fibroblasts 1 0.19 (0.013)
Height21 Cells_Transformed_fibroblasts All 0.188 (0.013)
Height21 CMC.BRAIN.RNASEQ 1e.06 0.121 (0.013)
Height21 CMC.BRAIN.RNASEQ 1e.05 0.127 (0.013)
Height21 CMC.BRAIN.RNASEQ 1e.04 0.131 (0.013)
Height21 CMC.BRAIN.RNASEQ 0.001 0.142 (0.013)
Height21 CMC.BRAIN.RNASEQ 0.01 0.167 (0.013)
Height21 CMC.BRAIN.RNASEQ 0.05 0.177 (0.013)
Height21 CMC.BRAIN.RNASEQ 0.1 0.18 (0.013)
Height21 CMC.BRAIN.RNASEQ 0.5 0.18 (0.013)
Height21 CMC.BRAIN.RNASEQ 1 0.18 (0.013)
Height21 CMC.BRAIN.RNASEQ All 0.184 (0.013)
Height21 CMC.BRAIN.RNASEQ_SPLICING 1e.06 0.115 (0.013)
Height21 CMC.BRAIN.RNASEQ_SPLICING 1e.05 0.115 (0.013)
Height21 CMC.BRAIN.RNASEQ_SPLICING 1e.04 0.115 (0.013)
Height21 CMC.BRAIN.RNASEQ_SPLICING 0.001 0.123 (0.013)
Height21 CMC.BRAIN.RNASEQ_SPLICING 0.01 0.137 (0.013)
Height21 CMC.BRAIN.RNASEQ_SPLICING 0.05 0.144 (0.013)
Height21 CMC.BRAIN.RNASEQ_SPLICING 0.1 0.145 (0.013)
Height21 CMC.BRAIN.RNASEQ_SPLICING 0.5 0.147 (0.013)
Height21 CMC.BRAIN.RNASEQ_SPLICING 1 0.147 (0.013)
Height21 CMC.BRAIN.RNASEQ_SPLICING All 0.147 (0.013)
Height21 Colon_Sigmoid 1e.06 0.103 (0.013)
Height21 Colon_Sigmoid 1e.05 0.108 (0.013)
Height21 Colon_Sigmoid 1e.04 0.117 (0.013)
Height21 Colon_Sigmoid 0.001 0.128 (0.013)
Height21 Colon_Sigmoid 0.01 0.146 (0.013)
Height21 Colon_Sigmoid 0.05 0.152 (0.013)
Height21 Colon_Sigmoid 0.1 0.152 (0.013)
Height21 Colon_Sigmoid 0.5 0.159 (0.013)
Height21 Colon_Sigmoid 1 0.16 (0.013)
Height21 Colon_Sigmoid All 0.156 (0.013)
Height21 Colon_Transverse 1e.06 0.121 (0.013)
Height21 Colon_Transverse 1e.05 0.131 (0.013)
Height21 Colon_Transverse 1e.04 0.139 (0.013)
Height21 Colon_Transverse 0.001 0.151 (0.013)
Height21 Colon_Transverse 0.01 0.158 (0.013)
Height21 Colon_Transverse 0.05 0.162 (0.013)
Height21 Colon_Transverse 0.1 0.163 (0.013)
Height21 Colon_Transverse 0.5 0.17 (0.013)
Height21 Colon_Transverse 1 0.171 (0.013)
Height21 Colon_Transverse All 0.17 (0.013)
Height21 Esophagus_Gastroesophageal_Junction 1e.06 0.13 (0.013)
Height21 Esophagus_Gastroesophageal_Junction 1e.05 0.136 (0.013)
Height21 Esophagus_Gastroesophageal_Junction 1e.04 0.141 (0.013)
Height21 Esophagus_Gastroesophageal_Junction 0.001 0.149 (0.013)
Height21 Esophagus_Gastroesophageal_Junction 0.01 0.161 (0.013)
Height21 Esophagus_Gastroesophageal_Junction 0.05 0.173 (0.013)
Height21 Esophagus_Gastroesophageal_Junction 0.1 0.172 (0.013)
Height21 Esophagus_Gastroesophageal_Junction 0.5 0.177 (0.013)
Height21 Esophagus_Gastroesophageal_Junction 1 0.178 (0.013)
Height21 Esophagus_Gastroesophageal_Junction All 0.175 (0.013)
Height21 Esophagus_Mucosa 1e.06 0.137 (0.013)
Height21 Esophagus_Mucosa 1e.05 0.15 (0.013)
Height21 Esophagus_Mucosa 1e.04 0.157 (0.013)
Height21 Esophagus_Mucosa 0.001 0.17 (0.013)
Height21 Esophagus_Mucosa 0.01 0.185 (0.013)
Height21 Esophagus_Mucosa 0.05 0.192 (0.013)
Height21 Esophagus_Mucosa 0.1 0.19 (0.013)
Height21 Esophagus_Mucosa 0.5 0.194 (0.013)
Height21 Esophagus_Mucosa 1 0.194 (0.013)
Height21 Esophagus_Mucosa All 0.193 (0.013)
Height21 Esophagus_Muscularis 1e.06 0.136 (0.013)
Height21 Esophagus_Muscularis 1e.05 0.149 (0.013)
Height21 Esophagus_Muscularis 1e.04 0.157 (0.013)
Height21 Esophagus_Muscularis 0.001 0.17 (0.013)
Height21 Esophagus_Muscularis 0.01 0.179 (0.013)
Height21 Esophagus_Muscularis 0.05 0.19 (0.013)
Height21 Esophagus_Muscularis 0.1 0.196 (0.013)
Height21 Esophagus_Muscularis 0.5 0.196 (0.013)
Height21 Esophagus_Muscularis 1 0.196 (0.013)
Height21 Esophagus_Muscularis All 0.195 (0.013)
Height21 Heart_Atrial_Appendage 1e.06 0.101 (0.013)
Height21 Heart_Atrial_Appendage 1e.05 0.112 (0.013)
Height21 Heart_Atrial_Appendage 1e.04 0.126 (0.013)
Height21 Heart_Atrial_Appendage 0.001 0.138 (0.013)
Height21 Heart_Atrial_Appendage 0.01 0.149 (0.013)
Height21 Heart_Atrial_Appendage 0.05 0.157 (0.013)
Height21 Heart_Atrial_Appendage 0.1 0.158 (0.013)
Height21 Heart_Atrial_Appendage 0.5 0.162 (0.013)
Height21 Heart_Atrial_Appendage 1 0.163 (0.013)
Height21 Heart_Atrial_Appendage All 0.162 (0.013)
Height21 Heart_Left_Ventricle 1e.06 0.117 (0.013)
Height21 Heart_Left_Ventricle 1e.05 0.123 (0.013)
Height21 Heart_Left_Ventricle 1e.04 0.128 (0.013)
Height21 Heart_Left_Ventricle 0.001 0.138 (0.013)
Height21 Heart_Left_Ventricle 0.01 0.153 (0.013)
Height21 Heart_Left_Ventricle 0.05 0.151 (0.013)
Height21 Heart_Left_Ventricle 0.1 0.153 (0.013)
Height21 Heart_Left_Ventricle 0.5 0.159 (0.013)
Height21 Heart_Left_Ventricle 1 0.159 (0.013)
Height21 Heart_Left_Ventricle All 0.158 (0.013)
Height21 Liver 1e.06 0.106 (0.013)
Height21 Liver 1e.05 0.112 (0.013)
Height21 Liver 1e.04 0.124 (0.013)
Height21 Liver 0.001 0.128 (0.013)
Height21 Liver 0.01 0.139 (0.013)
Height21 Liver 0.05 0.144 (0.013)
Height21 Liver 0.1 0.142 (0.013)
Height21 Liver 0.5 0.147 (0.013)
Height21 Liver 1 0.146 (0.013)
Height21 Liver All 0.145 (0.013)
Height21 Lung 1e.06 0.137 (0.013)
Height21 Lung 1e.05 0.146 (0.013)
Height21 Lung 1e.04 0.152 (0.013)
Height21 Lung 0.001 0.164 (0.013)
Height21 Lung 0.01 0.177 (0.013)
Height21 Lung 0.05 0.187 (0.013)
Height21 Lung 0.1 0.185 (0.013)
Height21 Lung 0.5 0.184 (0.013)
Height21 Lung 1 0.184 (0.013)
Height21 Lung All 0.185 (0.013)
Height21 METSIM.ADIPOSE.RNASEQ 1e.06 0.132 (0.013)
Height21 METSIM.ADIPOSE.RNASEQ 1e.05 0.136 (0.013)
Height21 METSIM.ADIPOSE.RNASEQ 1e.04 0.15 (0.013)
Height21 METSIM.ADIPOSE.RNASEQ 0.001 0.164 (0.013)
Height21 METSIM.ADIPOSE.RNASEQ 0.01 0.175 (0.013)
Height21 METSIM.ADIPOSE.RNASEQ 0.05 0.176 (0.013)
Height21 METSIM.ADIPOSE.RNASEQ 0.1 0.181 (0.013)
Height21 METSIM.ADIPOSE.RNASEQ 0.5 0.179 (0.013)
Height21 METSIM.ADIPOSE.RNASEQ 1 0.179 (0.013)
Height21 METSIM.ADIPOSE.RNASEQ All 0.178 (0.013)
Height21 Minor_Salivary_Gland 1e.06 0.078 (0.014)
Height21 Minor_Salivary_Gland 1e.05 0.079 (0.013)
Height21 Minor_Salivary_Gland 1e.04 0.078 (0.014)
Height21 Minor_Salivary_Gland 0.001 0.092 (0.013)
Height21 Minor_Salivary_Gland 0.01 0.094 (0.013)
Height21 Minor_Salivary_Gland 0.05 0.101 (0.013)
Height21 Minor_Salivary_Gland 0.1 0.107 (0.013)
Height21 Minor_Salivary_Gland 0.5 0.103 (0.013)
Height21 Minor_Salivary_Gland 1 0.102 (0.013)
Height21 Minor_Salivary_Gland All 0.106 (0.013)
Height21 Muscle_Skeletal 1e.06 0.137 (0.013)
Height21 Muscle_Skeletal 1e.05 0.149 (0.013)
Height21 Muscle_Skeletal 1e.04 0.156 (0.013)
Height21 Muscle_Skeletal 0.001 0.161 (0.013)
Height21 Muscle_Skeletal 0.01 0.17 (0.013)
Height21 Muscle_Skeletal 0.05 0.178 (0.013)
Height21 Muscle_Skeletal 0.1 0.179 (0.013)
Height21 Muscle_Skeletal 0.5 0.184 (0.013)
Height21 Muscle_Skeletal 1 0.185 (0.013)
Height21 Muscle_Skeletal All 0.184 (0.013)
Height21 Nerve_Tibial 1e.06 0.154 (0.013)
Height21 Nerve_Tibial 1e.05 0.161 (0.013)
Height21 Nerve_Tibial 1e.04 0.168 (0.013)
Height21 Nerve_Tibial 0.001 0.183 (0.013)
Height21 Nerve_Tibial 0.01 0.201 (0.013)
Height21 Nerve_Tibial 0.05 0.211 (0.013)
Height21 Nerve_Tibial 0.1 0.213 (0.013)
Height21 Nerve_Tibial 0.5 0.22 (0.013)
Height21 Nerve_Tibial 1 0.219 (0.013)
Height21 Nerve_Tibial All 0.22 (0.013)
Height21 NTR.BLOOD.RNAARR 1e.06 0.11 (0.013)
Height21 NTR.BLOOD.RNAARR 1e.05 0.117 (0.013)
Height21 NTR.BLOOD.RNAARR 1e.04 0.124 (0.013)
Height21 NTR.BLOOD.RNAARR 0.001 0.124 (0.013)
Height21 NTR.BLOOD.RNAARR 0.01 0.132 (0.013)
Height21 NTR.BLOOD.RNAARR 0.05 0.138 (0.013)
Height21 NTR.BLOOD.RNAARR 0.1 0.14 (0.013)
Height21 NTR.BLOOD.RNAARR 0.5 0.154 (0.013)
Height21 NTR.BLOOD.RNAARR 1 0.154 (0.013)
Height21 NTR.BLOOD.RNAARR All 0.155 (0.013)
Height21 Ovary 1e.06 0.086 (0.013)
Height21 Ovary 1e.05 0.088 (0.013)
Height21 Ovary 1e.04 0.093 (0.013)
Height21 Ovary 0.001 0.102 (0.013)
Height21 Ovary 0.01 0.115 (0.013)
Height21 Ovary 0.05 0.121 (0.013)
Height21 Ovary 0.1 0.119 (0.013)
Height21 Ovary 0.5 0.115 (0.013)
Height21 Ovary 1 0.117 (0.013)
Height21 Ovary All 0.117 (0.013)
Height21 Pancreas 1e.06 0.126 (0.013)
Height21 Pancreas 1e.05 0.138 (0.013)
Height21 Pancreas 1e.04 0.14 (0.013)
Height21 Pancreas 0.001 0.154 (0.013)
Height21 Pancreas 0.01 0.161 (0.013)
Height21 Pancreas 0.05 0.17 (0.013)
Height21 Pancreas 0.1 0.165 (0.013)
Height21 Pancreas 0.5 0.167 (0.013)
Height21 Pancreas 1 0.166 (0.013)
Height21 Pancreas All 0.167 (0.013)
Height21 Pituitary 1e.06 0.123 (0.013)
Height21 Pituitary 1e.05 0.138 (0.013)
Height21 Pituitary 1e.04 0.135 (0.013)
Height21 Pituitary 0.001 0.146 (0.013)
Height21 Pituitary 0.01 0.155 (0.013)
Height21 Pituitary 0.05 0.16 (0.013)
Height21 Pituitary 0.1 0.163 (0.013)
Height21 Pituitary 0.5 0.161 (0.013)
Height21 Pituitary 1 0.159 (0.013)
Height21 Pituitary All 0.166 (0.013)
Height21 Prostate 1e.06 0.077 (0.014)
Height21 Prostate 1e.05 0.086 (0.013)
Height21 Prostate 1e.04 0.092 (0.013)
Height21 Prostate 0.001 0.102 (0.013)
Height21 Prostate 0.01 0.108 (0.013)
Height21 Prostate 0.05 0.115 (0.013)
Height21 Prostate 0.1 0.117 (0.013)
Height21 Prostate 0.5 0.121 (0.013)
Height21 Prostate 1 0.122 (0.013)
Height21 Prostate All 0.119 (0.013)
Height21 Skin_Not_Sun_Exposed_Suprapubic 1e.06 0.136 (0.013)
Height21 Skin_Not_Sun_Exposed_Suprapubic 1e.05 0.145 (0.013)
Height21 Skin_Not_Sun_Exposed_Suprapubic 1e.04 0.154 (0.013)
Height21 Skin_Not_Sun_Exposed_Suprapubic 0.001 0.16 (0.013)
Height21 Skin_Not_Sun_Exposed_Suprapubic 0.01 0.171 (0.013)
Height21 Skin_Not_Sun_Exposed_Suprapubic 0.05 0.179 (0.013)
Height21 Skin_Not_Sun_Exposed_Suprapubic 0.1 0.181 (0.013)
Height21 Skin_Not_Sun_Exposed_Suprapubic 0.5 0.183 (0.013)
Height21 Skin_Not_Sun_Exposed_Suprapubic 1 0.182 (0.013)
Height21 Skin_Not_Sun_Exposed_Suprapubic All 0.181 (0.013)
Height21 Skin_Sun_Exposed_Lower_leg 1e.06 0.145 (0.013)
Height21 Skin_Sun_Exposed_Lower_leg 1e.05 0.153 (0.013)
Height21 Skin_Sun_Exposed_Lower_leg 1e.04 0.16 (0.013)
Height21 Skin_Sun_Exposed_Lower_leg 0.001 0.18 (0.013)
Height21 Skin_Sun_Exposed_Lower_leg 0.01 0.192 (0.013)
Height21 Skin_Sun_Exposed_Lower_leg 0.05 0.202 (0.013)
Height21 Skin_Sun_Exposed_Lower_leg 0.1 0.206 (0.013)
Height21 Skin_Sun_Exposed_Lower_leg 0.5 0.209 (0.013)
Height21 Skin_Sun_Exposed_Lower_leg 1 0.208 (0.013)
Height21 Skin_Sun_Exposed_Lower_leg All 0.207 (0.013)
Height21 Small_Intestine_Terminal_Ileum 1e.06 0.103 (0.013)
Height21 Small_Intestine_Terminal_Ileum 1e.05 0.107 (0.013)
Height21 Small_Intestine_Terminal_Ileum 1e.04 0.108 (0.013)
Height21 Small_Intestine_Terminal_Ileum 0.001 0.116 (0.013)
Height21 Small_Intestine_Terminal_Ileum 0.01 0.122 (0.013)
Height21 Small_Intestine_Terminal_Ileum 0.05 0.125 (0.013)
Height21 Small_Intestine_Terminal_Ileum 0.1 0.127 (0.013)
Height21 Small_Intestine_Terminal_Ileum 0.5 0.13 (0.013)
Height21 Small_Intestine_Terminal_Ileum 1 0.131 (0.013)
Height21 Small_Intestine_Terminal_Ileum All 0.129 (0.013)
Height21 Spleen 1e.06 0.136 (0.013)
Height21 Spleen 1e.05 0.147 (0.013)
Height21 Spleen 1e.04 0.145 (0.013)
Height21 Spleen 0.001 0.153 (0.013)
Height21 Spleen 0.01 0.165 (0.013)
Height21 Spleen 0.05 0.167 (0.013)
Height21 Spleen 0.1 0.167 (0.013)
Height21 Spleen 0.5 0.166 (0.013)
Height21 Spleen 1 0.166 (0.013)
Height21 Spleen All 0.171 (0.013)
Height21 Stomach 1e.06 0.132 (0.013)
Height21 Stomach 1e.05 0.139 (0.013)
Height21 Stomach 1e.04 0.147 (0.013)
Height21 Stomach 0.001 0.153 (0.013)
Height21 Stomach 0.01 0.163 (0.013)
Height21 Stomach 0.05 0.171 (0.013)
Height21 Stomach 0.1 0.167 (0.013)
Height21 Stomach 0.5 0.167 (0.013)
Height21 Stomach 1 0.166 (0.013)
Height21 Stomach All 0.168 (0.013)
Height21 Testis 1e.06 0.144 (0.013)
Height21 Testis 1e.05 0.15 (0.013)
Height21 Testis 1e.04 0.163 (0.013)
Height21 Testis 0.001 0.179 (0.013)
Height21 Testis 0.01 0.185 (0.013)
Height21 Testis 0.05 0.193 (0.013)
Height21 Testis 0.1 0.191 (0.013)
Height21 Testis 0.5 0.191 (0.013)
Height21 Testis 1 0.192 (0.013)
Height21 Testis All 0.193 (0.013)
Height21 Thyroid 1e.06 0.159 (0.013)
Height21 Thyroid 1e.05 0.171 (0.013)
Height21 Thyroid 1e.04 0.178 (0.013)
Height21 Thyroid 0.001 0.188 (0.013)
Height21 Thyroid 0.01 0.198 (0.013)
Height21 Thyroid 0.05 0.203 (0.013)
Height21 Thyroid 0.1 0.204 (0.013)
Height21 Thyroid 0.5 0.205 (0.013)
Height21 Thyroid 1 0.204 (0.013)
Height21 Thyroid All 0.204 (0.013)
Height21 Uterus 1e.06 0.073 (0.014)
Height21 Uterus 1e.05 0.083 (0.013)
Height21 Uterus 1e.04 0.079 (0.013)
Height21 Uterus 0.001 0.08 (0.013)
Height21 Uterus 0.01 0.095 (0.013)
Height21 Uterus 0.05 0.099 (0.013)
Height21 Uterus 0.1 0.098 (0.013)
Height21 Uterus 0.5 0.102 (0.013)
Height21 Uterus 1 0.104 (0.013)
Height21 Uterus All 0.101 (0.013)
Height21 Vagina 1e.06 0.093 (0.013)
Height21 Vagina 1e.05 0.091 (0.013)
Height21 Vagina 1e.04 0.096 (0.013)
Height21 Vagina 0.001 0.107 (0.013)
Height21 Vagina 0.01 0.117 (0.013)
Height21 Vagina 0.05 0.111 (0.013)
Height21 Vagina 0.1 0.112 (0.013)
Height21 Vagina 0.5 0.118 (0.013)
Height21 Vagina 1 0.119 (0.013)
Height21 Vagina All 0.12 (0.013)
Height21 Whole_Blood 1e.06 0.125 (0.013)
Height21 Whole_Blood 1e.05 0.133 (0.013)
Height21 Whole_Blood 1e.04 0.134 (0.013)
Height21 Whole_Blood 0.001 0.146 (0.013)
Height21 Whole_Blood 0.01 0.16 (0.013)
Height21 Whole_Blood 0.05 0.171 (0.013)
Height21 Whole_Blood 0.1 0.173 (0.013)
Height21 Whole_Blood 0.5 0.172 (0.013)
Height21 Whole_Blood 1 0.173 (0.013)
Height21 Whole_Blood All 0.174 (0.013)
Height21 YFS.BLOOD.RNAARR 1e.06 0.134 (0.013)
Height21 YFS.BLOOD.RNAARR 1e.05 0.148 (0.013)
Height21 YFS.BLOOD.RNAARR 1e.04 0.155 (0.013)
Height21 YFS.BLOOD.RNAARR 0.001 0.167 (0.013)
Height21 YFS.BLOOD.RNAARR 0.01 0.182 (0.013)
Height21 YFS.BLOOD.RNAARR 0.05 0.186 (0.013)
Height21 YFS.BLOOD.RNAARR 0.1 0.191 (0.013)
Height21 YFS.BLOOD.RNAARR 0.5 0.194 (0.013)
Height21 YFS.BLOOD.RNAARR 1 0.194 (0.013)
Height21 YFS.BLOOD.RNAARR All 0.192 (0.013)
BMI21 Adipose_Subcutaneous 1e.06 0.06 (0.014)
BMI21 Adipose_Subcutaneous 1e.05 0.063 (0.014)
BMI21 Adipose_Subcutaneous 1e.04 0.073 (0.014)
BMI21 Adipose_Subcutaneous 0.001 0.089 (0.014)
BMI21 Adipose_Subcutaneous 0.01 0.1 (0.014)
BMI21 Adipose_Subcutaneous 0.05 0.11 (0.014)
BMI21 Adipose_Subcutaneous 0.1 0.114 (0.014)
BMI21 Adipose_Subcutaneous 0.5 0.116 (0.014)
BMI21 Adipose_Subcutaneous 1 0.116 (0.014)
BMI21 Adipose_Subcutaneous All 0.122 (0.014)
BMI21 Adipose_Visceral_Omentum 1e.06 0.053 (0.014)
BMI21 Adipose_Visceral_Omentum 1e.05 0.063 (0.014)
BMI21 Adipose_Visceral_Omentum 1e.04 0.071 (0.014)
BMI21 Adipose_Visceral_Omentum 0.001 0.087 (0.014)
BMI21 Adipose_Visceral_Omentum 0.01 0.092 (0.014)
BMI21 Adipose_Visceral_Omentum 0.05 0.098 (0.014)
BMI21 Adipose_Visceral_Omentum 0.1 0.1 (0.014)
BMI21 Adipose_Visceral_Omentum 0.5 0.102 (0.014)
BMI21 Adipose_Visceral_Omentum 1 0.104 (0.014)
BMI21 Adipose_Visceral_Omentum All 0.099 (0.014)
BMI21 Adrenal_Gland 1e.06 0.049 (0.014)
BMI21 Adrenal_Gland 1e.05 0.057 (0.014)
BMI21 Adrenal_Gland 1e.04 0.062 (0.014)
BMI21 Adrenal_Gland 0.001 0.069 (0.014)
BMI21 Adrenal_Gland 0.01 0.074 (0.014)
BMI21 Adrenal_Gland 0.05 0.079 (0.014)
BMI21 Adrenal_Gland 0.1 0.082 (0.014)
BMI21 Adrenal_Gland 0.5 0.089 (0.014)
BMI21 Adrenal_Gland 1 0.089 (0.014)
BMI21 Adrenal_Gland All 0.088 (0.014)
BMI21 Artery_Aorta 1e.06 0.042 (0.014)
BMI21 Artery_Aorta 1e.05 0.047 (0.014)
BMI21 Artery_Aorta 1e.04 0.052 (0.014)
BMI21 Artery_Aorta 0.001 0.064 (0.014)
BMI21 Artery_Aorta 0.01 0.076 (0.014)
BMI21 Artery_Aorta 0.05 0.085 (0.014)
BMI21 Artery_Aorta 0.1 0.086 (0.014)
BMI21 Artery_Aorta 0.5 0.09 (0.014)
BMI21 Artery_Aorta 1 0.089 (0.014)
BMI21 Artery_Aorta All 0.089 (0.014)
BMI21 Artery_Coronary 1e.06 0.033 (0.014)
BMI21 Artery_Coronary 1e.05 0.039 (0.014)
BMI21 Artery_Coronary 1e.04 0.04 (0.014)
BMI21 Artery_Coronary 0.001 0.054 (0.014)
BMI21 Artery_Coronary 0.01 0.061 (0.014)
BMI21 Artery_Coronary 0.05 0.068 (0.014)
BMI21 Artery_Coronary 0.1 0.071 (0.014)
BMI21 Artery_Coronary 0.5 0.067 (0.014)
BMI21 Artery_Coronary 1 0.066 (0.014)
BMI21 Artery_Coronary All 0.065 (0.014)
BMI21 Artery_Tibial 1e.06 0.067 (0.014)
BMI21 Artery_Tibial 1e.05 0.072 (0.014)
BMI21 Artery_Tibial 1e.04 0.085 (0.014)
BMI21 Artery_Tibial 0.001 0.099 (0.014)
BMI21 Artery_Tibial 0.01 0.114 (0.014)
BMI21 Artery_Tibial 0.05 0.118 (0.014)
BMI21 Artery_Tibial 0.1 0.119 (0.014)
BMI21 Artery_Tibial 0.5 0.12 (0.014)
BMI21 Artery_Tibial 1 0.12 (0.014)
BMI21 Artery_Tibial All 0.123 (0.014)
BMI21 Brain_Amygdala 1e.06 0.045 (0.014)
BMI21 Brain_Amygdala 1e.05 0.051 (0.014)
BMI21 Brain_Amygdala 1e.04 0.057 (0.014)
BMI21 Brain_Amygdala 0.001 0.069 (0.014)
BMI21 Brain_Amygdala 0.01 0.073 (0.014)
BMI21 Brain_Amygdala 0.05 0.079 (0.014)
BMI21 Brain_Amygdala 0.1 0.083 (0.014)
BMI21 Brain_Amygdala 0.5 0.08 (0.014)
BMI21 Brain_Amygdala 1 0.08 (0.014)
BMI21 Brain_Amygdala All 0.079 (0.014)
BMI21 Brain_Anterior_cingulate_cortex_BA24 1e.06 0.042 (0.014)
BMI21 Brain_Anterior_cingulate_cortex_BA24 1e.05 0.044 (0.014)
BMI21 Brain_Anterior_cingulate_cortex_BA24 1e.04 0.05 (0.014)
BMI21 Brain_Anterior_cingulate_cortex_BA24 0.001 0.068 (0.014)
BMI21 Brain_Anterior_cingulate_cortex_BA24 0.01 0.081 (0.014)
BMI21 Brain_Anterior_cingulate_cortex_BA24 0.05 0.086 (0.014)
BMI21 Brain_Anterior_cingulate_cortex_BA24 0.1 0.087 (0.014)
BMI21 Brain_Anterior_cingulate_cortex_BA24 0.5 0.087 (0.014)
BMI21 Brain_Anterior_cingulate_cortex_BA24 1 0.088 (0.014)
BMI21 Brain_Anterior_cingulate_cortex_BA24 All 0.097 (0.014)
BMI21 Brain_Caudate_basal_ganglia 1e.06 0.023 (0.014)
BMI21 Brain_Caudate_basal_ganglia 1e.05 0.027 (0.014)
BMI21 Brain_Caudate_basal_ganglia 1e.04 0.037 (0.014)
BMI21 Brain_Caudate_basal_ganglia 0.001 0.046 (0.014)
BMI21 Brain_Caudate_basal_ganglia 0.01 0.053 (0.014)
BMI21 Brain_Caudate_basal_ganglia 0.05 0.058 (0.014)
BMI21 Brain_Caudate_basal_ganglia 0.1 0.06 (0.014)
BMI21 Brain_Caudate_basal_ganglia 0.5 0.064 (0.014)
BMI21 Brain_Caudate_basal_ganglia 1 0.064 (0.014)
BMI21 Brain_Caudate_basal_ganglia All 0.077 (0.014)
BMI21 Brain_Cerebellar_Hemisphere 1e.06 0.045 (0.014)
BMI21 Brain_Cerebellar_Hemisphere 1e.05 0.045 (0.014)
BMI21 Brain_Cerebellar_Hemisphere 1e.04 0.051 (0.014)
BMI21 Brain_Cerebellar_Hemisphere 0.001 0.067 (0.014)
BMI21 Brain_Cerebellar_Hemisphere 0.01 0.077 (0.014)
BMI21 Brain_Cerebellar_Hemisphere 0.05 0.083 (0.014)
BMI21 Brain_Cerebellar_Hemisphere 0.1 0.085 (0.014)
BMI21 Brain_Cerebellar_Hemisphere 0.5 0.084 (0.014)
BMI21 Brain_Cerebellar_Hemisphere 1 0.083 (0.014)
BMI21 Brain_Cerebellar_Hemisphere All 0.092 (0.014)
BMI21 Brain_Cerebellum 1e.06 0.056 (0.014)
BMI21 Brain_Cerebellum 1e.05 0.057 (0.014)
BMI21 Brain_Cerebellum 1e.04 0.063 (0.014)
BMI21 Brain_Cerebellum 0.001 0.079 (0.014)
BMI21 Brain_Cerebellum 0.01 0.089 (0.014)
BMI21 Brain_Cerebellum 0.05 0.097 (0.014)
BMI21 Brain_Cerebellum 0.1 0.102 (0.014)
BMI21 Brain_Cerebellum 0.5 0.106 (0.014)
BMI21 Brain_Cerebellum 1 0.107 (0.014)
BMI21 Brain_Cerebellum All 0.116 (0.014)
BMI21 Brain_Cortex 1e.06 0.044 (0.014)
BMI21 Brain_Cortex 1e.05 0.046 (0.014)
BMI21 Brain_Cortex 1e.04 0.047 (0.014)
BMI21 Brain_Cortex 0.001 0.059 (0.014)
BMI21 Brain_Cortex 0.01 0.074 (0.014)
BMI21 Brain_Cortex 0.05 0.077 (0.014)
BMI21 Brain_Cortex 0.1 0.08 (0.014)
BMI21 Brain_Cortex 0.5 0.083 (0.014)
BMI21 Brain_Cortex 1 0.083 (0.014)
BMI21 Brain_Cortex All 0.092 (0.014)
BMI21 Brain_Frontal_Cortex_BA9 1e.06 0.041 (0.014)
BMI21 Brain_Frontal_Cortex_BA9 1e.05 0.049 (0.014)
BMI21 Brain_Frontal_Cortex_BA9 1e.04 0.053 (0.014)
BMI21 Brain_Frontal_Cortex_BA9 0.001 0.059 (0.014)
BMI21 Brain_Frontal_Cortex_BA9 0.01 0.064 (0.014)
BMI21 Brain_Frontal_Cortex_BA9 0.05 0.07 (0.014)
BMI21 Brain_Frontal_Cortex_BA9 0.1 0.074 (0.014)
BMI21 Brain_Frontal_Cortex_BA9 0.5 0.077 (0.014)
BMI21 Brain_Frontal_Cortex_BA9 1 0.076 (0.014)
BMI21 Brain_Frontal_Cortex_BA9 All 0.073 (0.014)
BMI21 Brain_Hippocampus 1e.06 0.033 (0.014)
BMI21 Brain_Hippocampus 1e.05 0.037 (0.014)
BMI21 Brain_Hippocampus 1e.04 0.044 (0.014)
BMI21 Brain_Hippocampus 0.001 0.05 (0.014)
BMI21 Brain_Hippocampus 0.01 0.059 (0.014)
BMI21 Brain_Hippocampus 0.05 0.067 (0.014)
BMI21 Brain_Hippocampus 0.1 0.069 (0.014)
BMI21 Brain_Hippocampus 0.5 0.071 (0.014)
BMI21 Brain_Hippocampus 1 0.071 (0.014)
BMI21 Brain_Hippocampus All 0.066 (0.014)
BMI21 Brain_Hypothalamus 1e.06 0.023 (0.014)
BMI21 Brain_Hypothalamus 1e.05 0.022 (0.014)
BMI21 Brain_Hypothalamus 1e.04 0.03 (0.014)
BMI21 Brain_Hypothalamus 0.001 0.039 (0.014)
BMI21 Brain_Hypothalamus 0.01 0.046 (0.014)
BMI21 Brain_Hypothalamus 0.05 0.05 (0.014)
BMI21 Brain_Hypothalamus 0.1 0.049 (0.014)
BMI21 Brain_Hypothalamus 0.5 0.051 (0.014)
BMI21 Brain_Hypothalamus 1 0.051 (0.014)
BMI21 Brain_Hypothalamus All 0.041 (0.014)
BMI21 Brain_Nucleus_accumbens_basal_ganglia 1e.06 0.009 (0.014)
BMI21 Brain_Nucleus_accumbens_basal_ganglia 1e.05 0.011 (0.014)
BMI21 Brain_Nucleus_accumbens_basal_ganglia 1e.04 0.023 (0.014)
BMI21 Brain_Nucleus_accumbens_basal_ganglia 0.001 0.03 (0.014)
BMI21 Brain_Nucleus_accumbens_basal_ganglia 0.01 0.037 (0.014)
BMI21 Brain_Nucleus_accumbens_basal_ganglia 0.05 0.044 (0.014)
BMI21 Brain_Nucleus_accumbens_basal_ganglia 0.1 0.047 (0.014)
BMI21 Brain_Nucleus_accumbens_basal_ganglia 0.5 0.051 (0.014)
BMI21 Brain_Nucleus_accumbens_basal_ganglia 1 0.05 (0.014)
BMI21 Brain_Nucleus_accumbens_basal_ganglia All 0.05 (0.014)
BMI21 Brain_Putamen_basal_ganglia 1e.06 0.023 (0.014)
BMI21 Brain_Putamen_basal_ganglia 1e.05 0.024 (0.014)
BMI21 Brain_Putamen_basal_ganglia 1e.04 0.032 (0.014)
BMI21 Brain_Putamen_basal_ganglia 0.001 0.046 (0.014)
BMI21 Brain_Putamen_basal_ganglia 0.01 0.054 (0.014)
BMI21 Brain_Putamen_basal_ganglia 0.05 0.068 (0.014)
BMI21 Brain_Putamen_basal_ganglia 0.1 0.069 (0.014)
BMI21 Brain_Putamen_basal_ganglia 0.5 0.071 (0.014)
BMI21 Brain_Putamen_basal_ganglia 1 0.071 (0.014)
BMI21 Brain_Putamen_basal_ganglia All 0.077 (0.014)
BMI21 Brain_Spinal_cord_cervical_c-1 1e.06 0.025 (0.014)
BMI21 Brain_Spinal_cord_cervical_c-1 1e.05 0.031 (0.014)
BMI21 Brain_Spinal_cord_cervical_c-1 1e.04 0.035 (0.014)
BMI21 Brain_Spinal_cord_cervical_c-1 0.001 0.051 (0.014)
BMI21 Brain_Spinal_cord_cervical_c-1 0.01 0.049 (0.014)
BMI21 Brain_Spinal_cord_cervical_c-1 0.05 0.052 (0.014)
BMI21 Brain_Spinal_cord_cervical_c-1 0.1 0.049 (0.014)
BMI21 Brain_Spinal_cord_cervical_c-1 0.5 0.048 (0.014)
BMI21 Brain_Spinal_cord_cervical_c-1 1 0.048 (0.014)
BMI21 Brain_Spinal_cord_cervical_c-1 All 0.046 (0.014)
BMI21 Brain_Substantia_nigra 1e.06 0.023 (0.014)
BMI21 Brain_Substantia_nigra 1e.05 0.021 (0.014)
BMI21 Brain_Substantia_nigra 1e.04 0.032 (0.014)
BMI21 Brain_Substantia_nigra 0.001 0.036 (0.014)
BMI21 Brain_Substantia_nigra 0.01 0.036 (0.014)
BMI21 Brain_Substantia_nigra 0.05 0.037 (0.014)
BMI21 Brain_Substantia_nigra 0.1 0.036 (0.014)
BMI21 Brain_Substantia_nigra 0.5 0.04 (0.014)
BMI21 Brain_Substantia_nigra 1 0.039 (0.014)
BMI21 Brain_Substantia_nigra All 0.032 (0.014)
BMI21 Breast_Mammary_Tissue 1e.06 0.043 (0.014)
BMI21 Breast_Mammary_Tissue 1e.05 0.042 (0.014)
BMI21 Breast_Mammary_Tissue 1e.04 0.048 (0.014)
BMI21 Breast_Mammary_Tissue 0.001 0.052 (0.014)
BMI21 Breast_Mammary_Tissue 0.01 0.059 (0.014)
BMI21 Breast_Mammary_Tissue 0.05 0.071 (0.014)
BMI21 Breast_Mammary_Tissue 0.1 0.076 (0.014)
BMI21 Breast_Mammary_Tissue 0.5 0.077 (0.014)
BMI21 Breast_Mammary_Tissue 1 0.078 (0.014)
BMI21 Breast_Mammary_Tissue All 0.075 (0.014)
BMI21 Cells_EBV-transformed_lymphocytes 1e.06 0.054 (0.014)
BMI21 Cells_EBV-transformed_lymphocytes 1e.05 0.057 (0.014)
BMI21 Cells_EBV-transformed_lymphocytes 1e.04 0.063 (0.014)
BMI21 Cells_EBV-transformed_lymphocytes 0.001 0.073 (0.014)
BMI21 Cells_EBV-transformed_lymphocytes 0.01 0.083 (0.014)
BMI21 Cells_EBV-transformed_lymphocytes 0.05 0.093 (0.014)
BMI21 Cells_EBV-transformed_lymphocytes 0.1 0.093 (0.014)
BMI21 Cells_EBV-transformed_lymphocytes 0.5 0.091 (0.014)
BMI21 Cells_EBV-transformed_lymphocytes 1 0.091 (0.014)
BMI21 Cells_EBV-transformed_lymphocytes All 0.093 (0.014)
BMI21 Cells_Transformed_fibroblasts 1e.06 0.056 (0.014)
BMI21 Cells_Transformed_fibroblasts 1e.05 0.063 (0.014)
BMI21 Cells_Transformed_fibroblasts 1e.04 0.068 (0.014)
BMI21 Cells_Transformed_fibroblasts 0.001 0.078 (0.014)
BMI21 Cells_Transformed_fibroblasts 0.01 0.088 (0.014)
BMI21 Cells_Transformed_fibroblasts 0.05 0.095 (0.014)
BMI21 Cells_Transformed_fibroblasts 0.1 0.096 (0.014)
BMI21 Cells_Transformed_fibroblasts 0.5 0.099 (0.014)
BMI21 Cells_Transformed_fibroblasts 1 0.099 (0.014)
BMI21 Cells_Transformed_fibroblasts All 0.098 (0.014)
BMI21 CMC.BRAIN.RNASEQ 1e.06 0.069 (0.014)
BMI21 CMC.BRAIN.RNASEQ 1e.05 0.072 (0.014)
BMI21 CMC.BRAIN.RNASEQ 1e.04 0.081 (0.014)
BMI21 CMC.BRAIN.RNASEQ 0.001 0.09 (0.014)
BMI21 CMC.BRAIN.RNASEQ 0.01 0.097 (0.014)
BMI21 CMC.BRAIN.RNASEQ 0.05 0.108 (0.014)
BMI21 CMC.BRAIN.RNASEQ 0.1 0.11 (0.014)
BMI21 CMC.BRAIN.RNASEQ 0.5 0.111 (0.014)
BMI21 CMC.BRAIN.RNASEQ 1 0.11 (0.014)
BMI21 CMC.BRAIN.RNASEQ All 0.106 (0.014)
BMI21 CMC.BRAIN.RNASEQ_SPLICING 1e.06 0.059 (0.014)
BMI21 CMC.BRAIN.RNASEQ_SPLICING 1e.05 0.062 (0.014)
BMI21 CMC.BRAIN.RNASEQ_SPLICING 1e.04 0.07 (0.014)
BMI21 CMC.BRAIN.RNASEQ_SPLICING 0.001 0.088 (0.014)
BMI21 CMC.BRAIN.RNASEQ_SPLICING 0.01 0.094 (0.014)
BMI21 CMC.BRAIN.RNASEQ_SPLICING 0.05 0.096 (0.014)
BMI21 CMC.BRAIN.RNASEQ_SPLICING 0.1 0.095 (0.014)
BMI21 CMC.BRAIN.RNASEQ_SPLICING 0.5 0.092 (0.014)
BMI21 CMC.BRAIN.RNASEQ_SPLICING 1 0.089 (0.014)
BMI21 CMC.BRAIN.RNASEQ_SPLICING All 0.091 (0.014)
BMI21 Colon_Sigmoid 1e.06 0.026 (0.014)
BMI21 Colon_Sigmoid 1e.05 0.024 (0.014)
BMI21 Colon_Sigmoid 1e.04 0.034 (0.014)
BMI21 Colon_Sigmoid 0.001 0.052 (0.014)
BMI21 Colon_Sigmoid 0.01 0.054 (0.014)
BMI21 Colon_Sigmoid 0.05 0.063 (0.014)
BMI21 Colon_Sigmoid 0.1 0.065 (0.014)
BMI21 Colon_Sigmoid 0.5 0.06 (0.014)
BMI21 Colon_Sigmoid 1 0.061 (0.014)
BMI21 Colon_Sigmoid All 0.067 (0.014)
BMI21 Colon_Transverse 1e.06 0.038 (0.014)
BMI21 Colon_Transverse 1e.05 0.046 (0.014)
BMI21 Colon_Transverse 1e.04 0.052 (0.014)
BMI21 Colon_Transverse 0.001 0.058 (0.014)
BMI21 Colon_Transverse 0.01 0.063 (0.014)
BMI21 Colon_Transverse 0.05 0.074 (0.014)
BMI21 Colon_Transverse 0.1 0.074 (0.014)
BMI21 Colon_Transverse 0.5 0.076 (0.014)
BMI21 Colon_Transverse 1 0.076 (0.014)
BMI21 Colon_Transverse All 0.074 (0.014)
BMI21 Esophagus_Gastroesophageal_Junction 1e.06 0.028 (0.014)
BMI21 Esophagus_Gastroesophageal_Junction 1e.05 0.04 (0.014)
BMI21 Esophagus_Gastroesophageal_Junction 1e.04 0.041 (0.014)
BMI21 Esophagus_Gastroesophageal_Junction 0.001 0.053 (0.014)
BMI21 Esophagus_Gastroesophageal_Junction 0.01 0.063 (0.014)
BMI21 Esophagus_Gastroesophageal_Junction 0.05 0.071 (0.014)
BMI21 Esophagus_Gastroesophageal_Junction 0.1 0.074 (0.014)
BMI21 Esophagus_Gastroesophageal_Junction 0.5 0.074 (0.014)
BMI21 Esophagus_Gastroesophageal_Junction 1 0.074 (0.014)
BMI21 Esophagus_Gastroesophageal_Junction All 0.078 (0.014)
BMI21 Esophagus_Mucosa 1e.06 0.046 (0.014)
BMI21 Esophagus_Mucosa 1e.05 0.049 (0.014)
BMI21 Esophagus_Mucosa 1e.04 0.057 (0.014)
BMI21 Esophagus_Mucosa 0.001 0.069 (0.014)
BMI21 Esophagus_Mucosa 0.01 0.08 (0.014)
BMI21 Esophagus_Mucosa 0.05 0.094 (0.014)
BMI21 Esophagus_Mucosa 0.1 0.096 (0.014)
BMI21 Esophagus_Mucosa 0.5 0.094 (0.014)
BMI21 Esophagus_Mucosa 1 0.094 (0.014)
BMI21 Esophagus_Mucosa All 0.097 (0.014)
BMI21 Esophagus_Muscularis 1e.06 0.054 (0.014)
BMI21 Esophagus_Muscularis 1e.05 0.058 (0.014)
BMI21 Esophagus_Muscularis 1e.04 0.065 (0.014)
BMI21 Esophagus_Muscularis 0.001 0.079 (0.014)
BMI21 Esophagus_Muscularis 0.01 0.091 (0.014)
BMI21 Esophagus_Muscularis 0.05 0.098 (0.014)
BMI21 Esophagus_Muscularis 0.1 0.102 (0.014)
BMI21 Esophagus_Muscularis 0.5 0.105 (0.014)
BMI21 Esophagus_Muscularis 1 0.105 (0.014)
BMI21 Esophagus_Muscularis All 0.107 (0.014)
BMI21 Heart_Atrial_Appendage 1e.06 0.034 (0.014)
BMI21 Heart_Atrial_Appendage 1e.05 0.042 (0.014)
BMI21 Heart_Atrial_Appendage 1e.04 0.058 (0.014)
BMI21 Heart_Atrial_Appendage 0.001 0.072 (0.014)
BMI21 Heart_Atrial_Appendage 0.01 0.087 (0.014)
BMI21 Heart_Atrial_Appendage 0.05 0.097 (0.014)
BMI21 Heart_Atrial_Appendage 0.1 0.095 (0.014)
BMI21 Heart_Atrial_Appendage 0.5 0.098 (0.014)
BMI21 Heart_Atrial_Appendage 1 0.096 (0.014)
BMI21 Heart_Atrial_Appendage All 0.107 (0.014)
BMI21 Heart_Left_Ventricle 1e.06 0.031 (0.014)
BMI21 Heart_Left_Ventricle 1e.05 0.04 (0.014)
BMI21 Heart_Left_Ventricle 1e.04 0.047 (0.014)
BMI21 Heart_Left_Ventricle 0.001 0.053 (0.014)
BMI21 Heart_Left_Ventricle 0.01 0.071 (0.014)
BMI21 Heart_Left_Ventricle 0.05 0.084 (0.014)
BMI21 Heart_Left_Ventricle 0.1 0.084 (0.014)
BMI21 Heart_Left_Ventricle 0.5 0.082 (0.014)
BMI21 Heart_Left_Ventricle 1 0.081 (0.014)
BMI21 Heart_Left_Ventricle All 0.08 (0.014)
BMI21 Liver 1e.06 0.04 (0.014)
BMI21 Liver 1e.05 0.035 (0.014)
BMI21 Liver 1e.04 0.042 (0.014)
BMI21 Liver 0.001 0.058 (0.014)
BMI21 Liver 0.01 0.066 (0.014)
BMI21 Liver 0.05 0.079 (0.014)
BMI21 Liver 0.1 0.078 (0.014)
BMI21 Liver 0.5 0.074 (0.014)
BMI21 Liver 1 0.072 (0.014)
BMI21 Liver All 0.08 (0.014)
BMI21 Lung 1e.06 0.059 (0.014)
BMI21 Lung 1e.05 0.065 (0.014)
BMI21 Lung 1e.04 0.069 (0.014)
BMI21 Lung 0.001 0.08 (0.014)
BMI21 Lung 0.01 0.094 (0.014)
BMI21 Lung 0.05 0.1 (0.014)
BMI21 Lung 0.1 0.102 (0.014)
BMI21 Lung 0.5 0.103 (0.014)
BMI21 Lung 1 0.102 (0.014)
BMI21 Lung All 0.104 (0.014)
BMI21 METSIM.ADIPOSE.RNASEQ 1e.06 0.045 (0.014)
BMI21 METSIM.ADIPOSE.RNASEQ 1e.05 0.056 (0.014)
BMI21 METSIM.ADIPOSE.RNASEQ 1e.04 0.064 (0.014)
BMI21 METSIM.ADIPOSE.RNASEQ 0.001 0.07 (0.014)
BMI21 METSIM.ADIPOSE.RNASEQ 0.01 0.083 (0.014)
BMI21 METSIM.ADIPOSE.RNASEQ 0.05 0.09 (0.014)
BMI21 METSIM.ADIPOSE.RNASEQ 0.1 0.098 (0.014)
BMI21 METSIM.ADIPOSE.RNASEQ 0.5 0.099 (0.014)
BMI21 METSIM.ADIPOSE.RNASEQ 1 0.098 (0.014)
BMI21 METSIM.ADIPOSE.RNASEQ All 0.099 (0.014)
BMI21 Minor_Salivary_Gland 1e.06 0.005 (0.014)
BMI21 Minor_Salivary_Gland 1e.05 0 (0.014)
BMI21 Minor_Salivary_Gland 1e.04 0.016 (0.014)
BMI21 Minor_Salivary_Gland 0.001 0.022 (0.014)
BMI21 Minor_Salivary_Gland 0.01 0.02 (0.014)
BMI21 Minor_Salivary_Gland 0.05 0.018 (0.014)
BMI21 Minor_Salivary_Gland 0.1 0.013 (0.014)
BMI21 Minor_Salivary_Gland 0.5 0.016 (0.014)
BMI21 Minor_Salivary_Gland 1 0.016 (0.014)
BMI21 Minor_Salivary_Gland All 0.011 (0.014)
BMI21 Muscle_Skeletal 1e.06 0.059 (0.014)
BMI21 Muscle_Skeletal 1e.05 0.063 (0.014)
BMI21 Muscle_Skeletal 1e.04 0.068 (0.014)
BMI21 Muscle_Skeletal 0.001 0.081 (0.014)
BMI21 Muscle_Skeletal 0.01 0.092 (0.014)
BMI21 Muscle_Skeletal 0.05 0.099 (0.014)
BMI21 Muscle_Skeletal 0.1 0.099 (0.014)
BMI21 Muscle_Skeletal 0.5 0.106 (0.014)
BMI21 Muscle_Skeletal 1 0.105 (0.014)
BMI21 Muscle_Skeletal All 0.105 (0.014)
BMI21 Nerve_Tibial 1e.06 0.072 (0.014)
BMI21 Nerve_Tibial 1e.05 0.072 (0.014)
BMI21 Nerve_Tibial 1e.04 0.078 (0.014)
BMI21 Nerve_Tibial 0.001 0.09 (0.014)
BMI21 Nerve_Tibial 0.01 0.099 (0.014)
BMI21 Nerve_Tibial 0.05 0.109 (0.014)
BMI21 Nerve_Tibial 0.1 0.111 (0.014)
BMI21 Nerve_Tibial 0.5 0.114 (0.014)
BMI21 Nerve_Tibial 1 0.115 (0.014)
BMI21 Nerve_Tibial All 0.117 (0.014)
BMI21 NTR.BLOOD.RNAARR 1e.06 0.036 (0.014)
BMI21 NTR.BLOOD.RNAARR 1e.05 0.048 (0.014)
BMI21 NTR.BLOOD.RNAARR 1e.04 0.054 (0.014)
BMI21 NTR.BLOOD.RNAARR 0.001 0.06 (0.014)
BMI21 NTR.BLOOD.RNAARR 0.01 0.063 (0.014)
BMI21 NTR.BLOOD.RNAARR 0.05 0.076 (0.014)
BMI21 NTR.BLOOD.RNAARR 0.1 0.08 (0.014)
BMI21 NTR.BLOOD.RNAARR 0.5 0.073 (0.014)
BMI21 NTR.BLOOD.RNAARR 1 0.074 (0.014)
BMI21 NTR.BLOOD.RNAARR All 0.075 (0.014)
BMI21 Ovary 1e.06 0.027 (0.014)
BMI21 Ovary 1e.05 0.021 (0.014)
BMI21 Ovary 1e.04 0.033 (0.014)
BMI21 Ovary 0.001 0.044 (0.014)
BMI21 Ovary 0.01 0.049 (0.014)
BMI21 Ovary 0.05 0.049 (0.014)
BMI21 Ovary 0.1 0.049 (0.014)
BMI21 Ovary 0.5 0.055 (0.014)
BMI21 Ovary 1 0.057 (0.014)
BMI21 Ovary All 0.058 (0.014)
BMI21 Pancreas 1e.06 0.053 (0.014)
BMI21 Pancreas 1e.05 0.059 (0.014)
BMI21 Pancreas 1e.04 0.061 (0.014)
BMI21 Pancreas 0.001 0.074 (0.014)
BMI21 Pancreas 0.01 0.082 (0.014)
BMI21 Pancreas 0.05 0.091 (0.014)
BMI21 Pancreas 0.1 0.092 (0.014)
BMI21 Pancreas 0.5 0.092 (0.014)
BMI21 Pancreas 1 0.093 (0.014)
BMI21 Pancreas All 0.086 (0.014)
BMI21 Pituitary 1e.06 0.023 (0.014)
BMI21 Pituitary 1e.05 0.028 (0.014)
BMI21 Pituitary 1e.04 0.035 (0.014)
BMI21 Pituitary 0.001 0.042 (0.014)
BMI21 Pituitary 0.01 0.054 (0.014)
BMI21 Pituitary 0.05 0.064 (0.014)
BMI21 Pituitary 0.1 0.064 (0.014)
BMI21 Pituitary 0.5 0.066 (0.014)
BMI21 Pituitary 1 0.066 (0.014)
BMI21 Pituitary All 0.077 (0.014)
BMI21 Prostate 1e.06 0.019 (0.014)
BMI21 Prostate 1e.05 0.021 (0.014)
BMI21 Prostate 1e.04 0.022 (0.014)
BMI21 Prostate 0.001 0.035 (0.014)
BMI21 Prostate 0.01 0.052 (0.014)
BMI21 Prostate 0.05 0.049 (0.014)
BMI21 Prostate 0.1 0.051 (0.014)
BMI21 Prostate 0.5 0.049 (0.014)
BMI21 Prostate 1 0.048 (0.014)
BMI21 Prostate All 0.061 (0.014)
BMI21 Skin_Not_Sun_Exposed_Suprapubic 1e.06 0.061 (0.014)
BMI21 Skin_Not_Sun_Exposed_Suprapubic 1e.05 0.065 (0.014)
BMI21 Skin_Not_Sun_Exposed_Suprapubic 1e.04 0.07 (0.014)
BMI21 Skin_Not_Sun_Exposed_Suprapubic 0.001 0.077 (0.014)
BMI21 Skin_Not_Sun_Exposed_Suprapubic 0.01 0.089 (0.014)
BMI21 Skin_Not_Sun_Exposed_Suprapubic 0.05 0.095 (0.014)
BMI21 Skin_Not_Sun_Exposed_Suprapubic 0.1 0.096 (0.014)
BMI21 Skin_Not_Sun_Exposed_Suprapubic 0.5 0.094 (0.014)
BMI21 Skin_Not_Sun_Exposed_Suprapubic 1 0.094 (0.014)
BMI21 Skin_Not_Sun_Exposed_Suprapubic All 0.092 (0.014)
BMI21 Skin_Sun_Exposed_Lower_leg 1e.06 0.054 (0.014)
BMI21 Skin_Sun_Exposed_Lower_leg 1e.05 0.059 (0.014)
BMI21 Skin_Sun_Exposed_Lower_leg 1e.04 0.066 (0.014)
BMI21 Skin_Sun_Exposed_Lower_leg 0.001 0.078 (0.014)
BMI21 Skin_Sun_Exposed_Lower_leg 0.01 0.086 (0.014)
BMI21 Skin_Sun_Exposed_Lower_leg 0.05 0.095 (0.014)
BMI21 Skin_Sun_Exposed_Lower_leg 0.1 0.097 (0.014)
BMI21 Skin_Sun_Exposed_Lower_leg 0.5 0.098 (0.014)
BMI21 Skin_Sun_Exposed_Lower_leg 1 0.098 (0.014)
BMI21 Skin_Sun_Exposed_Lower_leg All 0.096 (0.014)
BMI21 Small_Intestine_Terminal_Ileum 1e.06 0.039 (0.014)
BMI21 Small_Intestine_Terminal_Ileum 1e.05 0.044 (0.014)
BMI21 Small_Intestine_Terminal_Ileum 1e.04 0.052 (0.014)
BMI21 Small_Intestine_Terminal_Ileum 0.001 0.052 (0.014)
BMI21 Small_Intestine_Terminal_Ileum 0.01 0.066 (0.014)
BMI21 Small_Intestine_Terminal_Ileum 0.05 0.071 (0.014)
BMI21 Small_Intestine_Terminal_Ileum 0.1 0.075 (0.014)
BMI21 Small_Intestine_Terminal_Ileum 0.5 0.071 (0.014)
BMI21 Small_Intestine_Terminal_Ileum 1 0.072 (0.014)
BMI21 Small_Intestine_Terminal_Ileum All 0.064 (0.014)
BMI21 Spleen 1e.06 0.045 (0.014)
BMI21 Spleen 1e.05 0.05 (0.014)
BMI21 Spleen 1e.04 0.053 (0.014)
BMI21 Spleen 0.001 0.064 (0.014)
BMI21 Spleen 0.01 0.077 (0.014)
BMI21 Spleen 0.05 0.087 (0.014)
BMI21 Spleen 0.1 0.088 (0.014)
BMI21 Spleen 0.5 0.082 (0.014)
BMI21 Spleen 1 0.081 (0.014)
BMI21 Spleen All 0.09 (0.014)
BMI21 Stomach 1e.06 0.051 (0.014)
BMI21 Stomach 1e.05 0.06 (0.014)
BMI21 Stomach 1e.04 0.066 (0.014)
BMI21 Stomach 0.001 0.074 (0.014)
BMI21 Stomach 0.01 0.081 (0.014)
BMI21 Stomach 0.05 0.089 (0.014)
BMI21 Stomach 0.1 0.093 (0.014)
BMI21 Stomach 0.5 0.086 (0.014)
BMI21 Stomach 1 0.085 (0.014)
BMI21 Stomach All 0.085 (0.014)
BMI21 Testis 1e.06 0.059 (0.014)
BMI21 Testis 1e.05 0.069 (0.014)
BMI21 Testis 1e.04 0.078 (0.014)
BMI21 Testis 0.001 0.086 (0.014)
BMI21 Testis 0.01 0.098 (0.014)
BMI21 Testis 0.05 0.106 (0.014)
BMI21 Testis 0.1 0.11 (0.014)
BMI21 Testis 0.5 0.109 (0.014)
BMI21 Testis 1 0.109 (0.014)
BMI21 Testis All 0.119 (0.014)
BMI21 Thyroid 1e.06 0.048 (0.014)
BMI21 Thyroid 1e.05 0.049 (0.014)
BMI21 Thyroid 1e.04 0.057 (0.014)
BMI21 Thyroid 0.001 0.072 (0.014)
BMI21 Thyroid 0.01 0.082 (0.014)
BMI21 Thyroid 0.05 0.091 (0.014)
BMI21 Thyroid 0.1 0.095 (0.014)
BMI21 Thyroid 0.5 0.095 (0.014)
BMI21 Thyroid 1 0.096 (0.014)
BMI21 Thyroid All 0.093 (0.014)
BMI21 Uterus 1e.06 0.01 (0.014)
BMI21 Uterus 1e.05 0.012 (0.014)
BMI21 Uterus 1e.04 0.022 (0.014)
BMI21 Uterus 0.001 0.032 (0.014)
BMI21 Uterus 0.01 0.04 (0.014)
BMI21 Uterus 0.05 0.036 (0.014)
BMI21 Uterus 0.1 0.037 (0.014)
BMI21 Uterus 0.5 0.042 (0.014)
BMI21 Uterus 1 0.043 (0.014)
BMI21 Uterus All 0.032 (0.014)
BMI21 Vagina 1e.06 0.03 (0.014)
BMI21 Vagina 1e.05 0.03 (0.014)
BMI21 Vagina 1e.04 0.044 (0.014)
BMI21 Vagina 0.001 0.057 (0.014)
BMI21 Vagina 0.01 0.054 (0.014)
BMI21 Vagina 0.05 0.063 (0.014)
BMI21 Vagina 0.1 0.065 (0.014)
BMI21 Vagina 0.5 0.065 (0.014)
BMI21 Vagina 1 0.066 (0.014)
BMI21 Vagina All 0.061 (0.014)
BMI21 Whole_Blood 1e.06 0.054 (0.014)
BMI21 Whole_Blood 1e.05 0.056 (0.014)
BMI21 Whole_Blood 1e.04 0.062 (0.014)
BMI21 Whole_Blood 0.001 0.068 (0.014)
BMI21 Whole_Blood 0.01 0.087 (0.014)
BMI21 Whole_Blood 0.05 0.093 (0.014)
BMI21 Whole_Blood 0.1 0.095 (0.014)
BMI21 Whole_Blood 0.5 0.095 (0.014)
BMI21 Whole_Blood 1 0.096 (0.014)
BMI21 Whole_Blood All 0.097 (0.014)
BMI21 YFS.BLOOD.RNAARR 1e.06 0.032 (0.014)
BMI21 YFS.BLOOD.RNAARR 1e.05 0.039 (0.014)
BMI21 YFS.BLOOD.RNAARR 1e.04 0.054 (0.014)
BMI21 YFS.BLOOD.RNAARR 0.001 0.063 (0.014)
BMI21 YFS.BLOOD.RNAARR 0.01 0.071 (0.014)
BMI21 YFS.BLOOD.RNAARR 0.05 0.077 (0.014)
BMI21 YFS.BLOOD.RNAARR 0.1 0.078 (0.014)
BMI21 YFS.BLOOD.RNAARR 0.5 0.086 (0.014)
BMI21 YFS.BLOOD.RNAARR 1 0.084 (0.014)
BMI21 YFS.BLOOD.RNAARR All 0.083 (0.014)
GCSE Adipose_Subcutaneous 1e.06 0.086 (0.012)
GCSE Adipose_Subcutaneous 1e.05 0.092 (0.012)
GCSE Adipose_Subcutaneous 1e.04 0.106 (0.012)
GCSE Adipose_Subcutaneous 0.001 0.126 (0.012)
GCSE Adipose_Subcutaneous 0.01 0.14 (0.012)
GCSE Adipose_Subcutaneous 0.05 0.151 (0.012)
GCSE Adipose_Subcutaneous 0.1 0.156 (0.012)
GCSE Adipose_Subcutaneous 0.5 0.159 (0.012)
GCSE Adipose_Subcutaneous 1 0.159 (0.012)
GCSE Adipose_Subcutaneous All 0.16 (0.012)
GCSE Adipose_Visceral_Omentum 1e.06 0.081 (0.012)
GCSE Adipose_Visceral_Omentum 1e.05 0.1 (0.012)
GCSE Adipose_Visceral_Omentum 1e.04 0.109 (0.012)
GCSE Adipose_Visceral_Omentum 0.001 0.131 (0.012)
GCSE Adipose_Visceral_Omentum 0.01 0.141 (0.012)
GCSE Adipose_Visceral_Omentum 0.05 0.149 (0.012)
GCSE Adipose_Visceral_Omentum 0.1 0.155 (0.012)
GCSE Adipose_Visceral_Omentum 0.5 0.158 (0.012)
GCSE Adipose_Visceral_Omentum 1 0.157 (0.012)
GCSE Adipose_Visceral_Omentum All 0.156 (0.012)
GCSE Adrenal_Gland 1e.06 0.074 (0.012)
GCSE Adrenal_Gland 1e.05 0.091 (0.012)
GCSE Adrenal_Gland 1e.04 0.097 (0.012)
GCSE Adrenal_Gland 0.001 0.103 (0.012)
GCSE Adrenal_Gland 0.01 0.115 (0.012)
GCSE Adrenal_Gland 0.05 0.12 (0.012)
GCSE Adrenal_Gland 0.1 0.125 (0.012)
GCSE Adrenal_Gland 0.5 0.122 (0.012)
GCSE Adrenal_Gland 1 0.123 (0.012)
GCSE Adrenal_Gland All 0.122 (0.012)
GCSE Artery_Aorta 1e.06 0.079 (0.012)
GCSE Artery_Aorta 1e.05 0.087 (0.012)
GCSE Artery_Aorta 1e.04 0.097 (0.012)
GCSE Artery_Aorta 0.001 0.109 (0.012)
GCSE Artery_Aorta 0.01 0.12 (0.012)
GCSE Artery_Aorta 0.05 0.128 (0.012)
GCSE Artery_Aorta 0.1 0.131 (0.012)
GCSE Artery_Aorta 0.5 0.133 (0.012)
GCSE Artery_Aorta 1 0.134 (0.012)
GCSE Artery_Aorta All 0.135 (0.012)
GCSE Artery_Coronary 1e.06 0.074 (0.012)
GCSE Artery_Coronary 1e.05 0.08 (0.012)
GCSE Artery_Coronary 1e.04 0.087 (0.012)
GCSE Artery_Coronary 0.001 0.095 (0.012)
GCSE Artery_Coronary 0.01 0.111 (0.012)
GCSE Artery_Coronary 0.05 0.121 (0.012)
GCSE Artery_Coronary 0.1 0.117 (0.012)
GCSE Artery_Coronary 0.5 0.117 (0.012)
GCSE Artery_Coronary 1 0.119 (0.012)
GCSE Artery_Coronary All 0.122 (0.012)
GCSE Artery_Tibial 1e.06 0.079 (0.012)
GCSE Artery_Tibial 1e.05 0.088 (0.012)
GCSE Artery_Tibial 1e.04 0.104 (0.012)
GCSE Artery_Tibial 0.001 0.122 (0.012)
GCSE Artery_Tibial 0.01 0.133 (0.012)
GCSE Artery_Tibial 0.05 0.149 (0.012)
GCSE Artery_Tibial 0.1 0.151 (0.012)
GCSE Artery_Tibial 0.5 0.16 (0.012)
GCSE Artery_Tibial 1 0.16 (0.012)
GCSE Artery_Tibial All 0.165 (0.012)
GCSE Brain_Amygdala 1e.06 0.063 (0.012)
GCSE Brain_Amygdala 1e.05 0.069 (0.012)
GCSE Brain_Amygdala 1e.04 0.071 (0.012)
GCSE Brain_Amygdala 0.001 0.083 (0.012)
GCSE Brain_Amygdala 0.01 0.094 (0.012)
GCSE Brain_Amygdala 0.05 0.097 (0.012)
GCSE Brain_Amygdala 0.1 0.092 (0.012)
GCSE Brain_Amygdala 0.5 0.096 (0.012)
GCSE Brain_Amygdala 1 0.096 (0.012)
GCSE Brain_Amygdala All 0.094 (0.012)
GCSE Brain_Anterior_cingulate_cortex_BA24 1e.06 0.082 (0.012)
GCSE Brain_Anterior_cingulate_cortex_BA24 1e.05 0.091 (0.012)
GCSE Brain_Anterior_cingulate_cortex_BA24 1e.04 0.102 (0.012)
GCSE Brain_Anterior_cingulate_cortex_BA24 0.001 0.113 (0.012)
GCSE Brain_Anterior_cingulate_cortex_BA24 0.01 0.121 (0.012)
GCSE Brain_Anterior_cingulate_cortex_BA24 0.05 0.128 (0.012)
GCSE Brain_Anterior_cingulate_cortex_BA24 0.1 0.125 (0.012)
GCSE Brain_Anterior_cingulate_cortex_BA24 0.5 0.124 (0.012)
GCSE Brain_Anterior_cingulate_cortex_BA24 1 0.124 (0.012)
GCSE Brain_Anterior_cingulate_cortex_BA24 All 0.129 (0.012)
GCSE Brain_Caudate_basal_ganglia 1e.06 0.078 (0.012)
GCSE Brain_Caudate_basal_ganglia 1e.05 0.084 (0.012)
GCSE Brain_Caudate_basal_ganglia 1e.04 0.095 (0.012)
GCSE Brain_Caudate_basal_ganglia 0.001 0.101 (0.012)
GCSE Brain_Caudate_basal_ganglia 0.01 0.115 (0.012)
GCSE Brain_Caudate_basal_ganglia 0.05 0.12 (0.012)
GCSE Brain_Caudate_basal_ganglia 0.1 0.126 (0.012)
GCSE Brain_Caudate_basal_ganglia 0.5 0.123 (0.012)
GCSE Brain_Caudate_basal_ganglia 1 0.124 (0.012)
GCSE Brain_Caudate_basal_ganglia All 0.123 (0.012)
GCSE Brain_Cerebellar_Hemisphere 1e.06 0.086 (0.012)
GCSE Brain_Cerebellar_Hemisphere 1e.05 0.098 (0.012)
GCSE Brain_Cerebellar_Hemisphere 1e.04 0.111 (0.012)
GCSE Brain_Cerebellar_Hemisphere 0.001 0.12 (0.012)
GCSE Brain_Cerebellar_Hemisphere 0.01 0.13 (0.012)
GCSE Brain_Cerebellar_Hemisphere 0.05 0.138 (0.012)
GCSE Brain_Cerebellar_Hemisphere 0.1 0.139 (0.012)
GCSE Brain_Cerebellar_Hemisphere 0.5 0.142 (0.012)
GCSE Brain_Cerebellar_Hemisphere 1 0.142 (0.012)
GCSE Brain_Cerebellar_Hemisphere All 0.142 (0.012)
GCSE Brain_Cerebellum 1e.06 0.088 (0.012)
GCSE Brain_Cerebellum 1e.05 0.101 (0.012)
GCSE Brain_Cerebellum 1e.04 0.107 (0.012)
GCSE Brain_Cerebellum 0.001 0.118 (0.012)
GCSE Brain_Cerebellum 0.01 0.136 (0.012)
GCSE Brain_Cerebellum 0.05 0.141 (0.012)
GCSE Brain_Cerebellum 0.1 0.142 (0.012)
GCSE Brain_Cerebellum 0.5 0.143 (0.012)
GCSE Brain_Cerebellum 1 0.144 (0.012)
GCSE Brain_Cerebellum All 0.143 (0.012)
GCSE Brain_Cortex 1e.06 0.079 (0.012)
GCSE Brain_Cortex 1e.05 0.091 (0.012)
GCSE Brain_Cortex 1e.04 0.095 (0.012)
GCSE Brain_Cortex 0.001 0.111 (0.012)
GCSE Brain_Cortex 0.01 0.124 (0.012)
GCSE Brain_Cortex 0.05 0.128 (0.012)
GCSE Brain_Cortex 0.1 0.127 (0.012)
GCSE Brain_Cortex 0.5 0.132 (0.012)
GCSE Brain_Cortex 1 0.133 (0.012)
GCSE Brain_Cortex All 0.131 (0.012)
GCSE Brain_Frontal_Cortex_BA9 1e.06 0.078 (0.012)
GCSE Brain_Frontal_Cortex_BA9 1e.05 0.083 (0.012)
GCSE Brain_Frontal_Cortex_BA9 1e.04 0.091 (0.012)
GCSE Brain_Frontal_Cortex_BA9 0.001 0.097 (0.012)
GCSE Brain_Frontal_Cortex_BA9 0.01 0.108 (0.012)
GCSE Brain_Frontal_Cortex_BA9 0.05 0.109 (0.012)
GCSE Brain_Frontal_Cortex_BA9 0.1 0.109 (0.012)
GCSE Brain_Frontal_Cortex_BA9 0.5 0.115 (0.012)
GCSE Brain_Frontal_Cortex_BA9 1 0.115 (0.012)
GCSE Brain_Frontal_Cortex_BA9 All 0.114 (0.012)
GCSE Brain_Hippocampus 1e.06 0.076 (0.012)
GCSE Brain_Hippocampus 1e.05 0.084 (0.012)
GCSE Brain_Hippocampus 1e.04 0.089 (0.012)
GCSE Brain_Hippocampus 0.001 0.103 (0.012)
GCSE Brain_Hippocampus 0.01 0.114 (0.012)
GCSE Brain_Hippocampus 0.05 0.121 (0.012)
GCSE Brain_Hippocampus 0.1 0.122 (0.012)
GCSE Brain_Hippocampus 0.5 0.124 (0.012)
GCSE Brain_Hippocampus 1 0.124 (0.012)
GCSE Brain_Hippocampus All 0.123 (0.012)
GCSE Brain_Hypothalamus 1e.06 0.07 (0.012)
GCSE Brain_Hypothalamus 1e.05 0.075 (0.012)
GCSE Brain_Hypothalamus 1e.04 0.081 (0.012)
GCSE Brain_Hypothalamus 0.001 0.093 (0.012)
GCSE Brain_Hypothalamus 0.01 0.098 (0.012)
GCSE Brain_Hypothalamus 0.05 0.1 (0.012)
GCSE Brain_Hypothalamus 0.1 0.104 (0.012)
GCSE Brain_Hypothalamus 0.5 0.108 (0.012)
GCSE Brain_Hypothalamus 1 0.108 (0.012)
GCSE Brain_Hypothalamus All 0.103 (0.012)
GCSE Brain_Nucleus_accumbens_basal_ganglia 1e.06 0.072 (0.012)
GCSE Brain_Nucleus_accumbens_basal_ganglia 1e.05 0.077 (0.012)
GCSE Brain_Nucleus_accumbens_basal_ganglia 1e.04 0.081 (0.012)
GCSE Brain_Nucleus_accumbens_basal_ganglia 0.001 0.097 (0.012)
GCSE Brain_Nucleus_accumbens_basal_ganglia 0.01 0.106 (0.012)
GCSE Brain_Nucleus_accumbens_basal_ganglia 0.05 0.112 (0.012)
GCSE Brain_Nucleus_accumbens_basal_ganglia 0.1 0.115 (0.012)
GCSE Brain_Nucleus_accumbens_basal_ganglia 0.5 0.116 (0.012)
GCSE Brain_Nucleus_accumbens_basal_ganglia 1 0.115 (0.012)
GCSE Brain_Nucleus_accumbens_basal_ganglia All 0.116 (0.012)
GCSE Brain_Putamen_basal_ganglia 1e.06 0.083 (0.012)
GCSE Brain_Putamen_basal_ganglia 1e.05 0.091 (0.012)
GCSE Brain_Putamen_basal_ganglia 1e.04 0.091 (0.012)
GCSE Brain_Putamen_basal_ganglia 0.001 0.105 (0.012)
GCSE Brain_Putamen_basal_ganglia 0.01 0.114 (0.012)
GCSE Brain_Putamen_basal_ganglia 0.05 0.118 (0.012)
GCSE Brain_Putamen_basal_ganglia 0.1 0.119 (0.012)
GCSE Brain_Putamen_basal_ganglia 0.5 0.126 (0.012)
GCSE Brain_Putamen_basal_ganglia 1 0.126 (0.012)
GCSE Brain_Putamen_basal_ganglia All 0.126 (0.012)
GCSE Brain_Spinal_cord_cervical_c-1 1e.06 0.069 (0.012)
GCSE Brain_Spinal_cord_cervical_c-1 1e.05 0.079 (0.012)
GCSE Brain_Spinal_cord_cervical_c-1 1e.04 0.08 (0.012)
GCSE Brain_Spinal_cord_cervical_c-1 0.001 0.092 (0.012)
GCSE Brain_Spinal_cord_cervical_c-1 0.01 0.107 (0.012)
GCSE Brain_Spinal_cord_cervical_c-1 0.05 0.105 (0.012)
GCSE Brain_Spinal_cord_cervical_c-1 0.1 0.108 (0.012)
GCSE Brain_Spinal_cord_cervical_c-1 0.5 0.104 (0.012)
GCSE Brain_Spinal_cord_cervical_c-1 1 0.104 (0.012)
GCSE Brain_Spinal_cord_cervical_c-1 All 0.109 (0.012)
GCSE Brain_Substantia_nigra 1e.06 0.073 (0.012)
GCSE Brain_Substantia_nigra 1e.05 0.082 (0.012)
GCSE Brain_Substantia_nigra 1e.04 0.089 (0.012)
GCSE Brain_Substantia_nigra 0.001 0.086 (0.012)
GCSE Brain_Substantia_nigra 0.01 0.099 (0.012)
GCSE Brain_Substantia_nigra 0.05 0.104 (0.012)
GCSE Brain_Substantia_nigra 0.1 0.102 (0.012)
GCSE Brain_Substantia_nigra 0.5 0.098 (0.012)
GCSE Brain_Substantia_nigra 1 0.099 (0.012)
GCSE Brain_Substantia_nigra All 0.101 (0.012)
GCSE Breast_Mammary_Tissue 1e.06 0.081 (0.012)
GCSE Breast_Mammary_Tissue 1e.05 0.099 (0.012)
GCSE Breast_Mammary_Tissue 1e.04 0.105 (0.012)
GCSE Breast_Mammary_Tissue 0.001 0.116 (0.012)
GCSE Breast_Mammary_Tissue 0.01 0.126 (0.012)
GCSE Breast_Mammary_Tissue 0.05 0.132 (0.012)
GCSE Breast_Mammary_Tissue 0.1 0.138 (0.012)
GCSE Breast_Mammary_Tissue 0.5 0.14 (0.012)
GCSE Breast_Mammary_Tissue 1 0.139 (0.012)
GCSE Breast_Mammary_Tissue All 0.137 (0.012)
GCSE Cells_EBV-transformed_lymphocytes 1e.06 0.081 (0.012)
GCSE Cells_EBV-transformed_lymphocytes 1e.05 0.084 (0.012)
GCSE Cells_EBV-transformed_lymphocytes 1e.04 0.09 (0.012)
GCSE Cells_EBV-transformed_lymphocytes 0.001 0.094 (0.012)
GCSE Cells_EBV-transformed_lymphocytes 0.01 0.106 (0.012)
GCSE Cells_EBV-transformed_lymphocytes 0.05 0.119 (0.012)
GCSE Cells_EBV-transformed_lymphocytes 0.1 0.117 (0.012)
GCSE Cells_EBV-transformed_lymphocytes 0.5 0.114 (0.012)
GCSE Cells_EBV-transformed_lymphocytes 1 0.115 (0.012)
GCSE Cells_EBV-transformed_lymphocytes All 0.116 (0.012)
GCSE Cells_Transformed_fibroblasts 1e.06 0.08 (0.012)
GCSE Cells_Transformed_fibroblasts 1e.05 0.091 (0.012)
GCSE Cells_Transformed_fibroblasts 1e.04 0.11 (0.012)
GCSE Cells_Transformed_fibroblasts 0.001 0.121 (0.012)
GCSE Cells_Transformed_fibroblasts 0.01 0.137 (0.012)
GCSE Cells_Transformed_fibroblasts 0.05 0.144 (0.012)
GCSE Cells_Transformed_fibroblasts 0.1 0.154 (0.012)
GCSE Cells_Transformed_fibroblasts 0.5 0.159 (0.012)
GCSE Cells_Transformed_fibroblasts 1 0.159 (0.012)
GCSE Cells_Transformed_fibroblasts All 0.16 (0.012)
GCSE CMC.BRAIN.RNASEQ 1e.06 0.111 (0.012)
GCSE CMC.BRAIN.RNASEQ 1e.05 0.121 (0.012)
GCSE CMC.BRAIN.RNASEQ 1e.04 0.13 (0.012)
GCSE CMC.BRAIN.RNASEQ 0.001 0.144 (0.012)
GCSE CMC.BRAIN.RNASEQ 0.01 0.157 (0.012)
GCSE CMC.BRAIN.RNASEQ 0.05 0.164 (0.012)
GCSE CMC.BRAIN.RNASEQ 0.1 0.171 (0.012)
GCSE CMC.BRAIN.RNASEQ 0.5 0.18 (0.012)
GCSE CMC.BRAIN.RNASEQ 1 0.181 (0.012)
GCSE CMC.BRAIN.RNASEQ All 0.181 (0.012)
GCSE CMC.BRAIN.RNASEQ_SPLICING 1e.06 0.069 (0.012)
GCSE CMC.BRAIN.RNASEQ_SPLICING 1e.05 0.081 (0.012)
GCSE CMC.BRAIN.RNASEQ_SPLICING 1e.04 0.091 (0.012)
GCSE CMC.BRAIN.RNASEQ_SPLICING 0.001 0.103 (0.012)
GCSE CMC.BRAIN.RNASEQ_SPLICING 0.01 0.125 (0.012)
GCSE CMC.BRAIN.RNASEQ_SPLICING 0.05 0.13 (0.012)
GCSE CMC.BRAIN.RNASEQ_SPLICING 0.1 0.133 (0.012)
GCSE CMC.BRAIN.RNASEQ_SPLICING 0.5 0.134 (0.012)
GCSE CMC.BRAIN.RNASEQ_SPLICING 1 0.132 (0.012)
GCSE CMC.BRAIN.RNASEQ_SPLICING All 0.132 (0.012)
GCSE Colon_Sigmoid 1e.06 0.066 (0.012)
GCSE Colon_Sigmoid 1e.05 0.078 (0.012)
GCSE Colon_Sigmoid 1e.04 0.089 (0.012)
GCSE Colon_Sigmoid 0.001 0.096 (0.012)
GCSE Colon_Sigmoid 0.01 0.112 (0.012)
GCSE Colon_Sigmoid 0.05 0.117 (0.012)
GCSE Colon_Sigmoid 0.1 0.122 (0.012)
GCSE Colon_Sigmoid 0.5 0.129 (0.012)
GCSE Colon_Sigmoid 1 0.128 (0.012)
GCSE Colon_Sigmoid All 0.125 (0.012)
GCSE Colon_Transverse 1e.06 0.065 (0.012)
GCSE Colon_Transverse 1e.05 0.076 (0.012)
GCSE Colon_Transverse 1e.04 0.086 (0.012)
GCSE Colon_Transverse 0.001 0.1 (0.012)
GCSE Colon_Transverse 0.01 0.108 (0.012)
GCSE Colon_Transverse 0.05 0.118 (0.012)
GCSE Colon_Transverse 0.1 0.126 (0.012)
GCSE Colon_Transverse 0.5 0.131 (0.012)
GCSE Colon_Transverse 1 0.132 (0.012)
GCSE Colon_Transverse All 0.129 (0.012)
GCSE Esophagus_Gastroesophageal_Junction 1e.06 0.07 (0.012)
GCSE Esophagus_Gastroesophageal_Junction 1e.05 0.08 (0.012)
GCSE Esophagus_Gastroesophageal_Junction 1e.04 0.085 (0.012)
GCSE Esophagus_Gastroesophageal_Junction 0.001 0.102 (0.012)
GCSE Esophagus_Gastroesophageal_Junction 0.01 0.119 (0.012)
GCSE Esophagus_Gastroesophageal_Junction 0.05 0.127 (0.012)
GCSE Esophagus_Gastroesophageal_Junction 0.1 0.129 (0.012)
GCSE Esophagus_Gastroesophageal_Junction 0.5 0.132 (0.012)
GCSE Esophagus_Gastroesophageal_Junction 1 0.131 (0.012)
GCSE Esophagus_Gastroesophageal_Junction All 0.133 (0.012)
GCSE Esophagus_Mucosa 1e.06 0.077 (0.012)
GCSE Esophagus_Mucosa 1e.05 0.088 (0.012)
GCSE Esophagus_Mucosa 1e.04 0.104 (0.012)
GCSE Esophagus_Mucosa 0.001 0.12 (0.012)
GCSE Esophagus_Mucosa 0.01 0.132 (0.012)
GCSE Esophagus_Mucosa 0.05 0.142 (0.012)
GCSE Esophagus_Mucosa 0.1 0.146 (0.012)
GCSE Esophagus_Mucosa 0.5 0.15 (0.012)
GCSE Esophagus_Mucosa 1 0.15 (0.012)
GCSE Esophagus_Mucosa All 0.152 (0.012)
GCSE Esophagus_Muscularis 1e.06 0.088 (0.012)
GCSE Esophagus_Muscularis 1e.05 0.102 (0.012)
GCSE Esophagus_Muscularis 1e.04 0.116 (0.012)
GCSE Esophagus_Muscularis 0.001 0.127 (0.012)
GCSE Esophagus_Muscularis 0.01 0.142 (0.012)
GCSE Esophagus_Muscularis 0.05 0.149 (0.012)
GCSE Esophagus_Muscularis 0.1 0.152 (0.012)
GCSE Esophagus_Muscularis 0.5 0.155 (0.012)
GCSE Esophagus_Muscularis 1 0.155 (0.012)
GCSE Esophagus_Muscularis All 0.156 (0.012)
GCSE Heart_Atrial_Appendage 1e.06 0.082 (0.012)
GCSE Heart_Atrial_Appendage 1e.05 0.092 (0.012)
GCSE Heart_Atrial_Appendage 1e.04 0.101 (0.012)
GCSE Heart_Atrial_Appendage 0.001 0.115 (0.012)
GCSE Heart_Atrial_Appendage 0.01 0.131 (0.012)
GCSE Heart_Atrial_Appendage 0.05 0.137 (0.012)
GCSE Heart_Atrial_Appendage 0.1 0.141 (0.012)
GCSE Heart_Atrial_Appendage 0.5 0.142 (0.012)
GCSE Heart_Atrial_Appendage 1 0.142 (0.012)
GCSE Heart_Atrial_Appendage All 0.14 (0.012)
GCSE Heart_Left_Ventricle 1e.06 0.08 (0.012)
GCSE Heart_Left_Ventricle 1e.05 0.091 (0.012)
GCSE Heart_Left_Ventricle 1e.04 0.097 (0.012)
GCSE Heart_Left_Ventricle 0.001 0.113 (0.012)
GCSE Heart_Left_Ventricle 0.01 0.132 (0.012)
GCSE Heart_Left_Ventricle 0.05 0.138 (0.012)
GCSE Heart_Left_Ventricle 0.1 0.142 (0.012)
GCSE Heart_Left_Ventricle 0.5 0.147 (0.012)
GCSE Heart_Left_Ventricle 1 0.148 (0.012)
GCSE Heart_Left_Ventricle All 0.148 (0.012)
GCSE Liver 1e.06 0.066 (0.012)
GCSE Liver 1e.05 0.07 (0.012)
GCSE Liver 1e.04 0.073 (0.012)
GCSE Liver 0.001 0.09 (0.012)
GCSE Liver 0.01 0.101 (0.012)
GCSE Liver 0.05 0.102 (0.012)
GCSE Liver 0.1 0.102 (0.012)
GCSE Liver 0.5 0.105 (0.012)
GCSE Liver 1 0.105 (0.012)
GCSE Liver All 0.107 (0.012)
GCSE Lung 1e.06 0.091 (0.012)
GCSE Lung 1e.05 0.104 (0.012)
GCSE Lung 1e.04 0.116 (0.012)
GCSE Lung 0.001 0.133 (0.012)
GCSE Lung 0.01 0.149 (0.012)
GCSE Lung 0.05 0.155 (0.012)
GCSE Lung 0.1 0.158 (0.012)
GCSE Lung 0.5 0.161 (0.012)
GCSE Lung 1 0.162 (0.012)
GCSE Lung All 0.163 (0.012)
GCSE METSIM.ADIPOSE.RNASEQ 1e.06 0.086 (0.012)
GCSE METSIM.ADIPOSE.RNASEQ 1e.05 0.102 (0.012)
GCSE METSIM.ADIPOSE.RNASEQ 1e.04 0.111 (0.012)
GCSE METSIM.ADIPOSE.RNASEQ 0.001 0.128 (0.012)
GCSE METSIM.ADIPOSE.RNASEQ 0.01 0.139 (0.012)
GCSE METSIM.ADIPOSE.RNASEQ 0.05 0.149 (0.012)
GCSE METSIM.ADIPOSE.RNASEQ 0.1 0.154 (0.012)
GCSE METSIM.ADIPOSE.RNASEQ 0.5 0.159 (0.012)
GCSE METSIM.ADIPOSE.RNASEQ 1 0.16 (0.012)
GCSE METSIM.ADIPOSE.RNASEQ All 0.158 (0.012)
GCSE Minor_Salivary_Gland 1e.06 0.073 (0.012)
GCSE Minor_Salivary_Gland 1e.05 0.077 (0.012)
GCSE Minor_Salivary_Gland 1e.04 0.077 (0.012)
GCSE Minor_Salivary_Gland 0.001 0.089 (0.012)
GCSE Minor_Salivary_Gland 0.01 0.092 (0.012)
GCSE Minor_Salivary_Gland 0.05 0.102 (0.012)
GCSE Minor_Salivary_Gland 0.1 0.111 (0.012)
GCSE Minor_Salivary_Gland 0.5 0.111 (0.012)
GCSE Minor_Salivary_Gland 1 0.111 (0.012)
GCSE Minor_Salivary_Gland All 0.107 (0.012)
GCSE Muscle_Skeletal 1e.06 0.09 (0.012)
GCSE Muscle_Skeletal 1e.05 0.105 (0.012)
GCSE Muscle_Skeletal 1e.04 0.117 (0.012)
GCSE Muscle_Skeletal 0.001 0.131 (0.012)
GCSE Muscle_Skeletal 0.01 0.147 (0.012)
GCSE Muscle_Skeletal 0.05 0.15 (0.012)
GCSE Muscle_Skeletal 0.1 0.154 (0.012)
GCSE Muscle_Skeletal 0.5 0.16 (0.012)
GCSE Muscle_Skeletal 1 0.16 (0.012)
GCSE Muscle_Skeletal All 0.162 (0.012)
GCSE Nerve_Tibial 1e.06 0.081 (0.012)
GCSE Nerve_Tibial 1e.05 0.09 (0.012)
GCSE Nerve_Tibial 1e.04 0.106 (0.012)
GCSE Nerve_Tibial 0.001 0.122 (0.012)
GCSE Nerve_Tibial 0.01 0.139 (0.012)
GCSE Nerve_Tibial 0.05 0.148 (0.012)
GCSE Nerve_Tibial 0.1 0.151 (0.012)
GCSE Nerve_Tibial 0.5 0.158 (0.012)
GCSE Nerve_Tibial 1 0.158 (0.012)
GCSE Nerve_Tibial All 0.16 (0.012)
GCSE NTR.BLOOD.RNAARR 1e.06 0.061 (0.012)
GCSE NTR.BLOOD.RNAARR 1e.05 0.073 (0.012)
GCSE NTR.BLOOD.RNAARR 1e.04 0.082 (0.012)
GCSE NTR.BLOOD.RNAARR 0.001 0.098 (0.012)
GCSE NTR.BLOOD.RNAARR 0.01 0.105 (0.012)
GCSE NTR.BLOOD.RNAARR 0.05 0.113 (0.012)
GCSE NTR.BLOOD.RNAARR 0.1 0.113 (0.012)
GCSE NTR.BLOOD.RNAARR 0.5 0.113 (0.012)
GCSE NTR.BLOOD.RNAARR 1 0.114 (0.012)
GCSE NTR.BLOOD.RNAARR All 0.112 (0.012)
GCSE Ovary 1e.06 0.065 (0.012)
GCSE Ovary 1e.05 0.076 (0.012)
GCSE Ovary 1e.04 0.084 (0.012)
GCSE Ovary 0.001 0.091 (0.012)
GCSE Ovary 0.01 0.1 (0.012)
GCSE Ovary 0.05 0.109 (0.012)
GCSE Ovary 0.1 0.113 (0.012)
GCSE Ovary 0.5 0.111 (0.012)
GCSE Ovary 1 0.111 (0.012)
GCSE Ovary All 0.112 (0.012)
GCSE Pancreas 1e.06 0.082 (0.012)
GCSE Pancreas 1e.05 0.086 (0.012)
GCSE Pancreas 1e.04 0.096 (0.012)
GCSE Pancreas 0.001 0.11 (0.012)
GCSE Pancreas 0.01 0.127 (0.012)
GCSE Pancreas 0.05 0.133 (0.012)
GCSE Pancreas 0.1 0.134 (0.012)
GCSE Pancreas 0.5 0.132 (0.012)
GCSE Pancreas 1 0.132 (0.012)
GCSE Pancreas All 0.135 (0.012)
GCSE Pituitary 1e.06 0.07 (0.012)
GCSE Pituitary 1e.05 0.079 (0.012)
GCSE Pituitary 1e.04 0.088 (0.012)
GCSE Pituitary 0.001 0.096 (0.012)
GCSE Pituitary 0.01 0.112 (0.012)
GCSE Pituitary 0.05 0.117 (0.012)
GCSE Pituitary 0.1 0.117 (0.012)
GCSE Pituitary 0.5 0.125 (0.012)
GCSE Pituitary 1 0.126 (0.012)
GCSE Pituitary All 0.121 (0.012)
GCSE Prostate 1e.06 0.069 (0.012)
GCSE Prostate 1e.05 0.077 (0.012)
GCSE Prostate 1e.04 0.089 (0.012)
GCSE Prostate 0.001 0.094 (0.012)
GCSE Prostate 0.01 0.11 (0.012)
GCSE Prostate 0.05 0.11 (0.012)
GCSE Prostate 0.1 0.117 (0.012)
GCSE Prostate 0.5 0.117 (0.012)
GCSE Prostate 1 0.117 (0.012)
GCSE Prostate All 0.119 (0.012)
GCSE Skin_Not_Sun_Exposed_Suprapubic 1e.06 0.082 (0.012)
GCSE Skin_Not_Sun_Exposed_Suprapubic 1e.05 0.093 (0.012)
GCSE Skin_Not_Sun_Exposed_Suprapubic 1e.04 0.103 (0.012)
GCSE Skin_Not_Sun_Exposed_Suprapubic 0.001 0.116 (0.012)
GCSE Skin_Not_Sun_Exposed_Suprapubic 0.01 0.134 (0.012)
GCSE Skin_Not_Sun_Exposed_Suprapubic 0.05 0.144 (0.012)
GCSE Skin_Not_Sun_Exposed_Suprapubic 0.1 0.147 (0.012)
GCSE Skin_Not_Sun_Exposed_Suprapubic 0.5 0.151 (0.012)
GCSE Skin_Not_Sun_Exposed_Suprapubic 1 0.152 (0.012)
GCSE Skin_Not_Sun_Exposed_Suprapubic All 0.153 (0.012)
GCSE Skin_Sun_Exposed_Lower_leg 1e.06 0.088 (0.012)
GCSE Skin_Sun_Exposed_Lower_leg 1e.05 0.105 (0.012)
GCSE Skin_Sun_Exposed_Lower_leg 1e.04 0.112 (0.012)
GCSE Skin_Sun_Exposed_Lower_leg 0.001 0.135 (0.012)
GCSE Skin_Sun_Exposed_Lower_leg 0.01 0.144 (0.012)
GCSE Skin_Sun_Exposed_Lower_leg 0.05 0.154 (0.012)
GCSE Skin_Sun_Exposed_Lower_leg 0.1 0.16 (0.012)
GCSE Skin_Sun_Exposed_Lower_leg 0.5 0.163 (0.012)
GCSE Skin_Sun_Exposed_Lower_leg 1 0.163 (0.012)
GCSE Skin_Sun_Exposed_Lower_leg All 0.17 (0.012)
GCSE Small_Intestine_Terminal_Ileum 1e.06 0.067 (0.012)
GCSE Small_Intestine_Terminal_Ileum 1e.05 0.074 (0.012)
GCSE Small_Intestine_Terminal_Ileum 1e.04 0.08 (0.012)
GCSE Small_Intestine_Terminal_Ileum 0.001 0.09 (0.012)
GCSE Small_Intestine_Terminal_Ileum 0.01 0.112 (0.012)
GCSE Small_Intestine_Terminal_Ileum 0.05 0.12 (0.012)
GCSE Small_Intestine_Terminal_Ileum 0.1 0.12 (0.012)
GCSE Small_Intestine_Terminal_Ileum 0.5 0.121 (0.012)
GCSE Small_Intestine_Terminal_Ileum 1 0.121 (0.012)
GCSE Small_Intestine_Terminal_Ileum All 0.118 (0.012)
GCSE Spleen 1e.06 0.075 (0.012)
GCSE Spleen 1e.05 0.081 (0.012)
GCSE Spleen 1e.04 0.091 (0.012)
GCSE Spleen 0.001 0.11 (0.012)
GCSE Spleen 0.01 0.119 (0.012)
GCSE Spleen 0.05 0.129 (0.012)
GCSE Spleen 0.1 0.134 (0.012)
GCSE Spleen 0.5 0.139 (0.012)
GCSE Spleen 1 0.139 (0.012)
GCSE Spleen All 0.136 (0.012)
GCSE Stomach 1e.06 0.066 (0.012)
GCSE Stomach 1e.05 0.074 (0.012)
GCSE Stomach 1e.04 0.075 (0.012)
GCSE Stomach 0.001 0.087 (0.012)
GCSE Stomach 0.01 0.102 (0.012)
GCSE Stomach 0.05 0.104 (0.012)
GCSE Stomach 0.1 0.105 (0.012)
GCSE Stomach 0.5 0.111 (0.012)
GCSE Stomach 1 0.111 (0.012)
GCSE Stomach All 0.111 (0.012)
GCSE Testis 1e.06 0.092 (0.012)
GCSE Testis 1e.05 0.103 (0.012)
GCSE Testis 1e.04 0.113 (0.012)
GCSE Testis 0.001 0.13 (0.012)
GCSE Testis 0.01 0.146 (0.012)
GCSE Testis 0.05 0.152 (0.012)
GCSE Testis 0.1 0.157 (0.012)
GCSE Testis 0.5 0.163 (0.012)
GCSE Testis 1 0.163 (0.012)
GCSE Testis All 0.161 (0.012)
GCSE Thyroid 1e.06 0.084 (0.012)
GCSE Thyroid 1e.05 0.097 (0.012)
GCSE Thyroid 1e.04 0.108 (0.012)
GCSE Thyroid 0.001 0.12 (0.012)
GCSE Thyroid 0.01 0.144 (0.012)
GCSE Thyroid 0.05 0.154 (0.012)
GCSE Thyroid 0.1 0.155 (0.012)
GCSE Thyroid 0.5 0.157 (0.012)
GCSE Thyroid 1 0.157 (0.012)
GCSE Thyroid All 0.16 (0.012)
GCSE Uterus 1e.06 0.063 (0.012)
GCSE Uterus 1e.05 0.067 (0.012)
GCSE Uterus 1e.04 0.074 (0.012)
GCSE Uterus 0.001 0.084 (0.012)
GCSE Uterus 0.01 0.089 (0.012)
GCSE Uterus 0.05 0.096 (0.012)
GCSE Uterus 0.1 0.095 (0.012)
GCSE Uterus 0.5 0.093 (0.012)
GCSE Uterus 1 0.093 (0.012)
GCSE Uterus All 0.093 (0.012)
GCSE Vagina 1e.06 0.07 (0.012)
GCSE Vagina 1e.05 0.08 (0.012)
GCSE Vagina 1e.04 0.081 (0.012)
GCSE Vagina 0.001 0.083 (0.012)
GCSE Vagina 0.01 0.091 (0.012)
GCSE Vagina 0.05 0.094 (0.012)
GCSE Vagina 0.1 0.094 (0.012)
GCSE Vagina 0.5 0.093 (0.012)
GCSE Vagina 1 0.093 (0.012)
GCSE Vagina All 0.092 (0.012)
GCSE Whole_Blood 1e.06 0.096 (0.012)
GCSE Whole_Blood 1e.05 0.109 (0.012)
GCSE Whole_Blood 1e.04 0.115 (0.012)
GCSE Whole_Blood 0.001 0.128 (0.012)
GCSE Whole_Blood 0.01 0.145 (0.012)
GCSE Whole_Blood 0.05 0.152 (0.012)
GCSE Whole_Blood 0.1 0.157 (0.012)
GCSE Whole_Blood 0.5 0.159 (0.012)
GCSE Whole_Blood 1 0.159 (0.012)
GCSE Whole_Blood All 0.157 (0.012)
GCSE YFS.BLOOD.RNAARR 1e.06 0.087 (0.012)
GCSE YFS.BLOOD.RNAARR 1e.05 0.096 (0.012)
GCSE YFS.BLOOD.RNAARR 1e.04 0.107 (0.012)
GCSE YFS.BLOOD.RNAARR 0.001 0.123 (0.012)
GCSE YFS.BLOOD.RNAARR 0.01 0.141 (0.012)
GCSE YFS.BLOOD.RNAARR 0.05 0.148 (0.012)
GCSE YFS.BLOOD.RNAARR 0.1 0.147 (0.012)
GCSE YFS.BLOOD.RNAARR 0.5 0.15 (0.012)
GCSE YFS.BLOOD.RNAARR 1 0.15 (0.012)
GCSE YFS.BLOOD.RNAARR All 0.151 (0.012)
ADHD Adipose_Subcutaneous 1e.06 0.019 (0.011)
ADHD Adipose_Subcutaneous 1e.05 0.012 (0.011)
ADHD Adipose_Subcutaneous 1e.04 0.012 (0.011)
ADHD Adipose_Subcutaneous 0.001 0.008 (0.011)
ADHD Adipose_Subcutaneous 0.01 0.02 (0.011)
ADHD Adipose_Subcutaneous 0.05 0.031 (0.011)
ADHD Adipose_Subcutaneous 0.1 0.038 (0.011)
ADHD Adipose_Subcutaneous 0.5 0.053 (0.011)
ADHD Adipose_Subcutaneous 1 0.056 (0.011)
ADHD Adipose_Subcutaneous All 0.054 (0.011)
ADHD Adipose_Visceral_Omentum 1e.06 -0.014 (0.011)
ADHD Adipose_Visceral_Omentum 1e.05 -0.02 (0.011)
ADHD Adipose_Visceral_Omentum 1e.04 -0.014 (0.011)
ADHD Adipose_Visceral_Omentum 0.001 0.004 (0.011)
ADHD Adipose_Visceral_Omentum 0.01 0.027 (0.011)
ADHD Adipose_Visceral_Omentum 0.05 0.034 (0.011)
ADHD Adipose_Visceral_Omentum 0.1 0.028 (0.011)
ADHD Adipose_Visceral_Omentum 0.5 0.051 (0.011)
ADHD Adipose_Visceral_Omentum 1 0.05 (0.011)
ADHD Adipose_Visceral_Omentum All 0.044 (0.011)
ADHD Adrenal_Gland 1e.05 -0.006 (0.011)
ADHD Adrenal_Gland 1e.04 -0.018 (0.011)
ADHD Adrenal_Gland 0.001 -0.02 (0.011)
ADHD Adrenal_Gland 0.01 0.002 (0.011)
ADHD Adrenal_Gland 0.05 0.021 (0.011)
ADHD Adrenal_Gland 0.1 0.032 (0.011)
ADHD Adrenal_Gland 0.5 0.052 (0.011)
ADHD Adrenal_Gland 1 0.052 (0.011)
ADHD Adrenal_Gland All 0.046 (0.011)
ADHD Artery_Aorta 1e.06 0.015 (0.011)
ADHD Artery_Aorta 1e.05 0.021 (0.011)
ADHD Artery_Aorta 1e.04 0.019 (0.011)
ADHD Artery_Aorta 0.001 0.009 (0.011)
ADHD Artery_Aorta 0.01 0.013 (0.011)
ADHD Artery_Aorta 0.05 0.026 (0.011)
ADHD Artery_Aorta 0.1 0.033 (0.011)
ADHD Artery_Aorta 0.5 0.058 (0.011)
ADHD Artery_Aorta 1 0.057 (0.011)
ADHD Artery_Aorta All 0.054 (0.011)
ADHD Artery_Coronary 1e.06 0.02 (0.011)
ADHD Artery_Coronary 1e.05 0.014 (0.011)
ADHD Artery_Coronary 1e.04 0.012 (0.011)
ADHD Artery_Coronary 0.001 0.026 (0.011)
ADHD Artery_Coronary 0.01 0.007 (0.011)
ADHD Artery_Coronary 0.05 0.007 (0.011)
ADHD Artery_Coronary 0.1 0.029 (0.011)
ADHD Artery_Coronary 0.5 0.029 (0.011)
ADHD Artery_Coronary 1 0.026 (0.011)
ADHD Artery_Coronary All 0.029 (0.011)
ADHD Artery_Tibial 1e.06 0.026 (0.011)
ADHD Artery_Tibial 1e.05 0.018 (0.011)
ADHD Artery_Tibial 1e.04 0.018 (0.011)
ADHD Artery_Tibial 0.001 0.028 (0.011)
ADHD Artery_Tibial 0.01 0.023 (0.011)
ADHD Artery_Tibial 0.05 0.033 (0.011)
ADHD Artery_Tibial 0.1 0.031 (0.011)
ADHD Artery_Tibial 0.5 0.053 (0.011)
ADHD Artery_Tibial 1 0.055 (0.011)
ADHD Artery_Tibial All 0.05 (0.011)
ADHD Brain_Amygdala 1e.05 -0.005 (0.011)
ADHD Brain_Amygdala 1e.04 -0.012 (0.011)
ADHD Brain_Amygdala 0.001 -0.007 (0.011)
ADHD Brain_Amygdala 0.01 0.012 (0.011)
ADHD Brain_Amygdala 0.05 0.004 (0.011)
ADHD Brain_Amygdala 0.1 0.009 (0.011)
ADHD Brain_Amygdala 0.5 0.016 (0.011)
ADHD Brain_Amygdala 1 0.018 (0.011)
ADHD Brain_Amygdala All 0.001 (0.011)
ADHD Brain_Anterior_cingulate_cortex_BA24 1e.05 0.011 (0.011)
ADHD Brain_Anterior_cingulate_cortex_BA24 1e.04 0.005 (0.011)
ADHD Brain_Anterior_cingulate_cortex_BA24 0.001 -0.019 (0.011)
ADHD Brain_Anterior_cingulate_cortex_BA24 0.01 -0.012 (0.011)
ADHD Brain_Anterior_cingulate_cortex_BA24 0.05 0.007 (0.011)
ADHD Brain_Anterior_cingulate_cortex_BA24 0.1 0.02 (0.011)
ADHD Brain_Anterior_cingulate_cortex_BA24 0.5 0.033 (0.011)
ADHD Brain_Anterior_cingulate_cortex_BA24 1 0.039 (0.011)
ADHD Brain_Anterior_cingulate_cortex_BA24 All 0.03 (0.011)
ADHD Brain_Caudate_basal_ganglia 1e.06 0.024 (0.011)
ADHD Brain_Caudate_basal_ganglia 1e.05 0.015 (0.011)
ADHD Brain_Caudate_basal_ganglia 1e.04 0.015 (0.011)
ADHD Brain_Caudate_basal_ganglia 0.001 0.006 (0.011)
ADHD Brain_Caudate_basal_ganglia 0.01 0.011 (0.011)
ADHD Brain_Caudate_basal_ganglia 0.05 0.024 (0.011)
ADHD Brain_Caudate_basal_ganglia 0.1 0.027 (0.011)
ADHD Brain_Caudate_basal_ganglia 0.5 0.041 (0.011)
ADHD Brain_Caudate_basal_ganglia 1 0.046 (0.011)
ADHD Brain_Caudate_basal_ganglia All 0.046 (0.011)
ADHD Brain_Cerebellar_Hemisphere 1e.06 0.008 (0.011)
ADHD Brain_Cerebellar_Hemisphere 1e.05 -0.017 (0.011)
ADHD Brain_Cerebellar_Hemisphere 1e.04 -0.014 (0.011)
ADHD Brain_Cerebellar_Hemisphere 0.001 -0.017 (0.011)
ADHD Brain_Cerebellar_Hemisphere 0.01 0.007 (0.011)
ADHD Brain_Cerebellar_Hemisphere 0.05 0.009 (0.011)
ADHD Brain_Cerebellar_Hemisphere 0.1 0.024 (0.011)
ADHD Brain_Cerebellar_Hemisphere 0.5 0.025 (0.011)
ADHD Brain_Cerebellar_Hemisphere 1 0.029 (0.011)
ADHD Brain_Cerebellar_Hemisphere All 0.026 (0.011)
ADHD Brain_Cerebellum 1e.06 0.024 (0.011)
ADHD Brain_Cerebellum 1e.05 0.006 (0.011)
ADHD Brain_Cerebellum 1e.04 0.001 (0.011)
ADHD Brain_Cerebellum 0.001 -0.019 (0.011)
ADHD Brain_Cerebellum 0.01 0.001 (0.011)
ADHD Brain_Cerebellum 0.05 0.008 (0.011)
ADHD Brain_Cerebellum 0.1 0.015 (0.011)
ADHD Brain_Cerebellum 0.5 0.025 (0.011)
ADHD Brain_Cerebellum 1 0.028 (0.011)
ADHD Brain_Cerebellum All 0.033 (0.011)
ADHD Brain_Cortex 1e.05 -0.028 (0.011)
ADHD Brain_Cortex 1e.04 0.018 (0.011)
ADHD Brain_Cortex 0.001 0.011 (0.011)
ADHD Brain_Cortex 0.01 0.007 (0.011)
ADHD Brain_Cortex 0.05 0.017 (0.011)
ADHD Brain_Cortex 0.1 0.009 (0.011)
ADHD Brain_Cortex 0.5 0.033 (0.011)
ADHD Brain_Cortex 1 0.036 (0.011)
ADHD Brain_Cortex All 0.035 (0.011)
ADHD Brain_Frontal_Cortex_BA9 1e.06 0.008 (0.011)
ADHD Brain_Frontal_Cortex_BA9 1e.05 0.001 (0.011)
ADHD Brain_Frontal_Cortex_BA9 1e.04 -0.016 (0.011)
ADHD Brain_Frontal_Cortex_BA9 0.001 -0.019 (0.011)
ADHD Brain_Frontal_Cortex_BA9 0.01 0.01 (0.011)
ADHD Brain_Frontal_Cortex_BA9 0.05 0.001 (0.011)
ADHD Brain_Frontal_Cortex_BA9 0.1 0.009 (0.011)
ADHD Brain_Frontal_Cortex_BA9 0.5 0.035 (0.011)
ADHD Brain_Frontal_Cortex_BA9 1 0.036 (0.011)
ADHD Brain_Frontal_Cortex_BA9 All 0.026 (0.011)
ADHD Brain_Hippocampus 1e.06 0.008 (0.011)
ADHD Brain_Hippocampus 1e.05 0.015 (0.011)
ADHD Brain_Hippocampus 1e.04 0.019 (0.011)
ADHD Brain_Hippocampus 0.001 -0.023 (0.011)
ADHD Brain_Hippocampus 0.01 -0.001 (0.011)
ADHD Brain_Hippocampus 0.05 0.013 (0.011)
ADHD Brain_Hippocampus 0.1 0.013 (0.011)
ADHD Brain_Hippocampus 0.5 0.034 (0.011)
ADHD Brain_Hippocampus 1 0.032 (0.011)
ADHD Brain_Hippocampus All 0.025 (0.011)
ADHD Brain_Hypothalamus 1e.05 -0.01 (0.011)
ADHD Brain_Hypothalamus 1e.04 -0.002 (0.011)
ADHD Brain_Hypothalamus 0.001 0.006 (0.011)
ADHD Brain_Hypothalamus 0.01 0.002 (0.011)
ADHD Brain_Hypothalamus 0.05 0.007 (0.011)
ADHD Brain_Hypothalamus 0.1 0.012 (0.011)
ADHD Brain_Hypothalamus 0.5 0.024 (0.011)
ADHD Brain_Hypothalamus 1 0.026 (0.011)
ADHD Brain_Hypothalamus All 0.021 (0.011)
ADHD Brain_Nucleus_accumbens_basal_ganglia 1e.05 -0.024 (0.011)
ADHD Brain_Nucleus_accumbens_basal_ganglia 1e.04 -0.011 (0.011)
ADHD Brain_Nucleus_accumbens_basal_ganglia 0.001 -0.012 (0.011)
ADHD Brain_Nucleus_accumbens_basal_ganglia 0.01 -0.021 (0.011)
ADHD Brain_Nucleus_accumbens_basal_ganglia 0.05 -0.01 (0.011)
ADHD Brain_Nucleus_accumbens_basal_ganglia 0.1 0.009 (0.011)
ADHD Brain_Nucleus_accumbens_basal_ganglia 0.5 0.017 (0.011)
ADHD Brain_Nucleus_accumbens_basal_ganglia 1 0.017 (0.011)
ADHD Brain_Nucleus_accumbens_basal_ganglia All 0.001 (0.011)
ADHD Brain_Putamen_basal_ganglia 1e.06 0.043 (0.011)
ADHD Brain_Putamen_basal_ganglia 1e.05 0.002 (0.011)
ADHD Brain_Putamen_basal_ganglia 1e.04 0.008 (0.011)
ADHD Brain_Putamen_basal_ganglia 0.001 0.01 (0.011)
ADHD Brain_Putamen_basal_ganglia 0.01 0.012 (0.011)
ADHD Brain_Putamen_basal_ganglia 0.05 0.008 (0.011)
ADHD Brain_Putamen_basal_ganglia 0.1 0.021 (0.011)
ADHD Brain_Putamen_basal_ganglia 0.5 0.029 (0.011)
ADHD Brain_Putamen_basal_ganglia 1 0.029 (0.011)
ADHD Brain_Putamen_basal_ganglia All 0.046 (0.011)
ADHD Brain_Spinal_cord_cervical_c-1 1e.06 -0.003 (0.011)
ADHD Brain_Spinal_cord_cervical_c-1 1e.05 -0.014 (0.011)
ADHD Brain_Spinal_cord_cervical_c-1 1e.04 -0.006 (0.011)
ADHD Brain_Spinal_cord_cervical_c-1 0.001 0.017 (0.011)
ADHD Brain_Spinal_cord_cervical_c-1 0.01 0.008 (0.011)
ADHD Brain_Spinal_cord_cervical_c-1 0.05 0.002 (0.011)
ADHD Brain_Spinal_cord_cervical_c-1 0.1 0.002 (0.011)
ADHD Brain_Spinal_cord_cervical_c-1 0.5 0.005 (0.011)
ADHD Brain_Spinal_cord_cervical_c-1 1 0.012 (0.011)
ADHD Brain_Spinal_cord_cervical_c-1 All 0.003 (0.011)
ADHD Brain_Substantia_nigra 1e.06 -0.006 (0.011)
ADHD Brain_Substantia_nigra 1e.05 -0.006 (0.011)
ADHD Brain_Substantia_nigra 1e.04 0 (0.011)
ADHD Brain_Substantia_nigra 0.001 0.013 (0.011)
ADHD Brain_Substantia_nigra 0.01 -0.009 (0.011)
ADHD Brain_Substantia_nigra 0.05 -0.008 (0.011)
ADHD Brain_Substantia_nigra 0.1 -0.007 (0.011)
ADHD Brain_Substantia_nigra 0.5 0.012 (0.011)
ADHD Brain_Substantia_nigra 1 0.011 (0.011)
ADHD Brain_Substantia_nigra All -0.018 (0.011)
ADHD Breast_Mammary_Tissue 1e.06 -0.023 (0.011)
ADHD Breast_Mammary_Tissue 1e.05 -0.013 (0.011)
ADHD Breast_Mammary_Tissue 1e.04 0.005 (0.011)
ADHD Breast_Mammary_Tissue 0.001 -0.018 (0.011)
ADHD Breast_Mammary_Tissue 0.01 0.018 (0.011)
ADHD Breast_Mammary_Tissue 0.05 0.023 (0.011)
ADHD Breast_Mammary_Tissue 0.1 0.018 (0.011)
ADHD Breast_Mammary_Tissue 0.5 0.039 (0.011)
ADHD Breast_Mammary_Tissue 1 0.043 (0.011)
ADHD Breast_Mammary_Tissue All 0.046 (0.011)
ADHD Cells_EBV-transformed_lymphocytes 1e.06 0.039 (0.011)
ADHD Cells_EBV-transformed_lymphocytes 1e.05 0.032 (0.011)
ADHD Cells_EBV-transformed_lymphocytes 1e.04 0.02 (0.011)
ADHD Cells_EBV-transformed_lymphocytes 0.001 0.022 (0.011)
ADHD Cells_EBV-transformed_lymphocytes 0.01 0.016 (0.011)
ADHD Cells_EBV-transformed_lymphocytes 0.05 0.028 (0.011)
ADHD Cells_EBV-transformed_lymphocytes 0.1 0.029 (0.011)
ADHD Cells_EBV-transformed_lymphocytes 0.5 0.037 (0.011)
ADHD Cells_EBV-transformed_lymphocytes 1 0.037 (0.011)
ADHD Cells_EBV-transformed_lymphocytes All 0.045 (0.011)
ADHD Cells_Transformed_fibroblasts 1e.06 0.019 (0.011)
ADHD Cells_Transformed_fibroblasts 1e.05 0.005 (0.011)
ADHD Cells_Transformed_fibroblasts 1e.04 0.017 (0.011)
ADHD Cells_Transformed_fibroblasts 0.001 0.018 (0.011)
ADHD Cells_Transformed_fibroblasts 0.01 0.032 (0.011)
ADHD Cells_Transformed_fibroblasts 0.05 0.03 (0.011)
ADHD Cells_Transformed_fibroblasts 0.1 0.037 (0.011)
ADHD Cells_Transformed_fibroblasts 0.5 0.053 (0.011)
ADHD Cells_Transformed_fibroblasts 1 0.054 (0.011)
ADHD Cells_Transformed_fibroblasts All 0.045 (0.011)
ADHD CMC.BRAIN.RNASEQ 1e.06 0.013 (0.011)
ADHD CMC.BRAIN.RNASEQ 1e.05 0.011 (0.011)
ADHD CMC.BRAIN.RNASEQ 1e.04 0.011 (0.011)
ADHD CMC.BRAIN.RNASEQ 0.001 0.003 (0.011)
ADHD CMC.BRAIN.RNASEQ 0.01 0.014 (0.011)
ADHD CMC.BRAIN.RNASEQ 0.05 0.039 (0.011)
ADHD CMC.BRAIN.RNASEQ 0.1 0.038 (0.011)
ADHD CMC.BRAIN.RNASEQ 0.5 0.051 (0.011)
ADHD CMC.BRAIN.RNASEQ 1 0.051 (0.011)
ADHD CMC.BRAIN.RNASEQ All 0.049 (0.011)
ADHD CMC.BRAIN.RNASEQ_SPLICING 1e.06 0.008 (0.011)
ADHD CMC.BRAIN.RNASEQ_SPLICING 1e.05 0.023 (0.011)
ADHD CMC.BRAIN.RNASEQ_SPLICING 1e.04 0.024 (0.011)
ADHD CMC.BRAIN.RNASEQ_SPLICING 0.001 0.014 (0.011)
ADHD CMC.BRAIN.RNASEQ_SPLICING 0.01 0.011 (0.011)
ADHD CMC.BRAIN.RNASEQ_SPLICING 0.05 0.025 (0.011)
ADHD CMC.BRAIN.RNASEQ_SPLICING 0.1 0.038 (0.011)
ADHD CMC.BRAIN.RNASEQ_SPLICING 0.5 0.053 (0.011)
ADHD CMC.BRAIN.RNASEQ_SPLICING 1 0.051 (0.011)
ADHD CMC.BRAIN.RNASEQ_SPLICING All 0.054 (0.011)
ADHD Colon_Sigmoid 1e.06 0.022 (0.011)
ADHD Colon_Sigmoid 1e.05 0.023 (0.011)
ADHD Colon_Sigmoid 1e.04 0.009 (0.011)
ADHD Colon_Sigmoid 0.001 0.016 (0.011)
ADHD Colon_Sigmoid 0.01 0.023 (0.011)
ADHD Colon_Sigmoid 0.05 0.031 (0.011)
ADHD Colon_Sigmoid 0.1 0.031 (0.011)
ADHD Colon_Sigmoid 0.5 0.054 (0.011)
ADHD Colon_Sigmoid 1 0.053 (0.011)
ADHD Colon_Sigmoid All 0.055 (0.011)
ADHD Colon_Transverse 1e.05 -0.022 (0.011)
ADHD Colon_Transverse 1e.04 -0.003 (0.011)
ADHD Colon_Transverse 0.001 -0.016 (0.011)
ADHD Colon_Transverse 0.01 0.017 (0.011)
ADHD Colon_Transverse 0.05 0.027 (0.011)
ADHD Colon_Transverse 0.1 0.044 (0.011)
ADHD Colon_Transverse 0.5 0.055 (0.011)
ADHD Colon_Transverse 1 0.057 (0.011)
ADHD Colon_Transverse All 0.044 (0.011)
ADHD Esophagus_Gastroesophageal_Junction 1e.06 -0.027 (0.011)
ADHD Esophagus_Gastroesophageal_Junction 1e.05 -0.013 (0.011)
ADHD Esophagus_Gastroesophageal_Junction 1e.04 -0.013 (0.011)
ADHD Esophagus_Gastroesophageal_Junction 0.001 0.007 (0.011)
ADHD Esophagus_Gastroesophageal_Junction 0.01 0.024 (0.011)
ADHD Esophagus_Gastroesophageal_Junction 0.05 0.032 (0.011)
ADHD Esophagus_Gastroesophageal_Junction 0.1 0.03 (0.011)
ADHD Esophagus_Gastroesophageal_Junction 0.5 0.038 (0.011)
ADHD Esophagus_Gastroesophageal_Junction 1 0.039 (0.011)
ADHD Esophagus_Gastroesophageal_Junction All 0.035 (0.011)
ADHD Esophagus_Mucosa 1e.06 -0.001 (0.011)
ADHD Esophagus_Mucosa 1e.05 -0.005 (0.011)
ADHD Esophagus_Mucosa 1e.04 0.008 (0.011)
ADHD Esophagus_Mucosa 0.001 0.021 (0.011)
ADHD Esophagus_Mucosa 0.01 0.024 (0.011)
ADHD Esophagus_Mucosa 0.05 0.039 (0.011)
ADHD Esophagus_Mucosa 0.1 0.045 (0.011)
ADHD Esophagus_Mucosa 0.5 0.06 (0.011)
ADHD Esophagus_Mucosa 1 0.059 (0.011)
ADHD Esophagus_Mucosa All 0.059 (0.011)
ADHD Esophagus_Muscularis 1e.06 0.03 (0.011)
ADHD Esophagus_Muscularis 1e.05 0.034 (0.011)
ADHD Esophagus_Muscularis 1e.04 0.025 (0.011)
ADHD Esophagus_Muscularis 0.001 0.012 (0.011)
ADHD Esophagus_Muscularis 0.01 0.025 (0.011)
ADHD Esophagus_Muscularis 0.05 0.037 (0.011)
ADHD Esophagus_Muscularis 0.1 0.035 (0.011)
ADHD Esophagus_Muscularis 0.5 0.051 (0.011)
ADHD Esophagus_Muscularis 1 0.054 (0.011)
ADHD Esophagus_Muscularis All 0.052 (0.011)
ADHD Heart_Atrial_Appendage 1e.06 0.028 (0.011)
ADHD Heart_Atrial_Appendage 1e.05 0.01 (0.011)
ADHD Heart_Atrial_Appendage 1e.04 0.01 (0.011)
ADHD Heart_Atrial_Appendage 0.001 0.013 (0.011)
ADHD Heart_Atrial_Appendage 0.01 0.02 (0.011)
ADHD Heart_Atrial_Appendage 0.05 0.03 (0.011)
ADHD Heart_Atrial_Appendage 0.1 0.033 (0.011)
ADHD Heart_Atrial_Appendage 0.5 0.043 (0.011)
ADHD Heart_Atrial_Appendage 1 0.046 (0.011)
ADHD Heart_Atrial_Appendage All 0.051 (0.011)
ADHD Heart_Left_Ventricle 1e.06 0.021 (0.011)
ADHD Heart_Left_Ventricle 1e.05 0.025 (0.011)
ADHD Heart_Left_Ventricle 1e.04 0.017 (0.011)
ADHD Heart_Left_Ventricle 0.001 0.026 (0.011)
ADHD Heart_Left_Ventricle 0.01 0.029 (0.011)
ADHD Heart_Left_Ventricle 0.05 0.032 (0.011)
ADHD Heart_Left_Ventricle 0.1 0.027 (0.011)
ADHD Heart_Left_Ventricle 0.5 0.043 (0.011)
ADHD Heart_Left_Ventricle 1 0.043 (0.011)
ADHD Heart_Left_Ventricle All 0.037 (0.011)
ADHD Liver 1e.06 0.035 (0.011)
ADHD Liver 1e.05 0.029 (0.011)
ADHD Liver 1e.04 0.008 (0.011)
ADHD Liver 0.001 0.001 (0.011)
ADHD Liver 0.01 0.005 (0.011)
ADHD Liver 0.05 0.02 (0.011)
ADHD Liver 0.1 0.018 (0.011)
ADHD Liver 0.5 0.03 (0.011)
ADHD Liver 1 0.026 (0.011)
ADHD Liver All 0.039 (0.011)
ADHD Lung 1e.06 0.033 (0.011)
ADHD Lung 1e.05 0.021 (0.011)
ADHD Lung 1e.04 0.018 (0.011)
ADHD Lung 0.001 0.024 (0.011)
ADHD Lung 0.01 0.031 (0.011)
ADHD Lung 0.05 0.043 (0.011)
ADHD Lung 0.1 0.041 (0.011)
ADHD Lung 0.5 0.062 (0.011)
ADHD Lung 1 0.061 (0.011)
ADHD Lung All 0.058 (0.011)
ADHD METSIM.ADIPOSE.RNASEQ 1e.05 0.016 (0.011)
ADHD METSIM.ADIPOSE.RNASEQ 1e.04 -0.003 (0.011)
ADHD METSIM.ADIPOSE.RNASEQ 0.001 -0.011 (0.011)
ADHD METSIM.ADIPOSE.RNASEQ 0.01 0.028 (0.011)
ADHD METSIM.ADIPOSE.RNASEQ 0.05 0.037 (0.011)
ADHD METSIM.ADIPOSE.RNASEQ 0.1 0.04 (0.011)
ADHD METSIM.ADIPOSE.RNASEQ 0.5 0.057 (0.011)
ADHD METSIM.ADIPOSE.RNASEQ 1 0.058 (0.011)
ADHD METSIM.ADIPOSE.RNASEQ All 0.046 (0.011)
ADHD Minor_Salivary_Gland 1e.06 0 (0.011)
ADHD Minor_Salivary_Gland 1e.05 0.002 (0.011)
ADHD Minor_Salivary_Gland 1e.04 -0.02 (0.011)
ADHD Minor_Salivary_Gland 0.001 -0.021 (0.011)
ADHD Minor_Salivary_Gland 0.01 -0.016 (0.011)
ADHD Minor_Salivary_Gland 0.05 -0.008 (0.011)
ADHD Minor_Salivary_Gland 0.1 0.001 (0.011)
ADHD Minor_Salivary_Gland 0.5 0.014 (0.011)
ADHD Minor_Salivary_Gland 1 0.015 (0.011)
ADHD Minor_Salivary_Gland All -0.002 (0.011)
ADHD Muscle_Skeletal 1e.06 0.036 (0.011)
ADHD Muscle_Skeletal 1e.05 0.034 (0.011)
ADHD Muscle_Skeletal 1e.04 0.027 (0.011)
ADHD Muscle_Skeletal 0.001 0.006 (0.011)
ADHD Muscle_Skeletal 0.01 0.018 (0.011)
ADHD Muscle_Skeletal 0.05 0.038 (0.011)
ADHD Muscle_Skeletal 0.1 0.036 (0.011)
ADHD Muscle_Skeletal 0.5 0.055 (0.011)
ADHD Muscle_Skeletal 1 0.051 (0.011)
ADHD Muscle_Skeletal All 0.063 (0.011)
ADHD Nerve_Tibial 1e.06 0.005 (0.011)
ADHD Nerve_Tibial 1e.05 0.005 (0.011)
ADHD Nerve_Tibial 1e.04 0 (0.011)
ADHD Nerve_Tibial 0.001 -0.003 (0.011)
ADHD Nerve_Tibial 0.01 0.016 (0.011)
ADHD Nerve_Tibial 0.05 0.011 (0.011)
ADHD Nerve_Tibial 0.1 0.017 (0.011)
ADHD Nerve_Tibial 0.5 0.034 (0.011)
ADHD Nerve_Tibial 1 0.036 (0.011)
ADHD Nerve_Tibial All 0.03 (0.011)
ADHD NTR.BLOOD.RNAARR 1e.04 -0.011 (0.011)
ADHD NTR.BLOOD.RNAARR 0.001 -0.028 (0.011)
ADHD NTR.BLOOD.RNAARR 0.01 0.009 (0.011)
ADHD NTR.BLOOD.RNAARR 0.05 0.007 (0.011)
ADHD NTR.BLOOD.RNAARR 0.1 0.023 (0.011)
ADHD NTR.BLOOD.RNAARR 0.5 0.027 (0.011)
ADHD NTR.BLOOD.RNAARR 1 0.034 (0.011)
ADHD NTR.BLOOD.RNAARR All 0.027 (0.011)
ADHD Ovary 1e.05 -0.018 (0.011)
ADHD Ovary 1e.04 -0.018 (0.011)
ADHD Ovary 0.001 -0.024 (0.011)
ADHD Ovary 0.01 0.011 (0.011)
ADHD Ovary 0.05 0.011 (0.011)
ADHD Ovary 0.1 0.017 (0.011)
ADHD Ovary 0.5 0.036 (0.011)
ADHD Ovary 1 0.037 (0.011)
ADHD Ovary All 0.032 (0.011)
ADHD Pancreas 1e.05 0.004 (0.011)
ADHD Pancreas 1e.04 -0.015 (0.011)
ADHD Pancreas 0.001 0.005 (0.011)
ADHD Pancreas 0.01 0.004 (0.011)
ADHD Pancreas 0.05 0.016 (0.011)
ADHD Pancreas 0.1 0.026 (0.011)
ADHD Pancreas 0.5 0.037 (0.011)
ADHD Pancreas 1 0.037 (0.011)
ADHD Pancreas All 0.034 (0.011)
ADHD Pituitary 1e.06 -0.002 (0.011)
ADHD Pituitary 1e.05 -0.004 (0.011)
ADHD Pituitary 1e.04 -0.02 (0.011)
ADHD Pituitary 0.001 -0.02 (0.011)
ADHD Pituitary 0.01 0.014 (0.011)
ADHD Pituitary 0.05 0.018 (0.011)
ADHD Pituitary 0.1 0.024 (0.011)
ADHD Pituitary 0.5 0.041 (0.011)
ADHD Pituitary 1 0.042 (0.011)
ADHD Pituitary All 0.031 (0.011)
ADHD Prostate 1e.06 -0.003 (0.011)
ADHD Prostate 1e.05 -0.023 (0.011)
ADHD Prostate 1e.04 -0.015 (0.011)
ADHD Prostate 0.001 -0.012 (0.011)
ADHD Prostate 0.01 0.003 (0.011)
ADHD Prostate 0.05 0.004 (0.011)
ADHD Prostate 0.1 0.002 (0.011)
ADHD Prostate 0.5 0.024 (0.011)
ADHD Prostate 1 0.024 (0.011)
ADHD Prostate All 0.023 (0.011)
ADHD Skin_Not_Sun_Exposed_Suprapubic 1e.06 0.018 (0.011)
ADHD Skin_Not_Sun_Exposed_Suprapubic 1e.05 0.017 (0.011)
ADHD Skin_Not_Sun_Exposed_Suprapubic 1e.04 0.026 (0.011)
ADHD Skin_Not_Sun_Exposed_Suprapubic 0.001 0.024 (0.011)
ADHD Skin_Not_Sun_Exposed_Suprapubic 0.01 0.034 (0.011)
ADHD Skin_Not_Sun_Exposed_Suprapubic 0.05 0.038 (0.011)
ADHD Skin_Not_Sun_Exposed_Suprapubic 0.1 0.039 (0.011)
ADHD Skin_Not_Sun_Exposed_Suprapubic 0.5 0.054 (0.011)
ADHD Skin_Not_Sun_Exposed_Suprapubic 1 0.055 (0.011)
ADHD Skin_Not_Sun_Exposed_Suprapubic All 0.053 (0.011)
ADHD Skin_Sun_Exposed_Lower_leg 1e.06 0.003 (0.011)
ADHD Skin_Sun_Exposed_Lower_leg 1e.05 -0.005 (0.011)
ADHD Skin_Sun_Exposed_Lower_leg 1e.04 -0.007 (0.011)
ADHD Skin_Sun_Exposed_Lower_leg 0.001 0.004 (0.011)
ADHD Skin_Sun_Exposed_Lower_leg 0.01 0.021 (0.011)
ADHD Skin_Sun_Exposed_Lower_leg 0.05 0.026 (0.011)
ADHD Skin_Sun_Exposed_Lower_leg 0.1 0.03 (0.011)
ADHD Skin_Sun_Exposed_Lower_leg 0.5 0.056 (0.011)
ADHD Skin_Sun_Exposed_Lower_leg 1 0.056 (0.011)
ADHD Skin_Sun_Exposed_Lower_leg All 0.055 (0.011)
ADHD Small_Intestine_Terminal_Ileum 1e.06 0.023 (0.011)
ADHD Small_Intestine_Terminal_Ileum 1e.05 0.006 (0.011)
ADHD Small_Intestine_Terminal_Ileum 1e.04 0.012 (0.011)
ADHD Small_Intestine_Terminal_Ileum 0.001 0.014 (0.011)
ADHD Small_Intestine_Terminal_Ileum 0.01 -0.02 (0.011)
ADHD Small_Intestine_Terminal_Ileum 0.05 0.015 (0.011)
ADHD Small_Intestine_Terminal_Ileum 0.1 0.022 (0.011)
ADHD Small_Intestine_Terminal_Ileum 0.5 0.039 (0.011)
ADHD Small_Intestine_Terminal_Ileum 1 0.04 (0.011)
ADHD Small_Intestine_Terminal_Ileum All 0.043 (0.011)
ADHD Spleen 1e.06 -0.003 (0.011)
ADHD Spleen 1e.05 -0.024 (0.011)
ADHD Spleen 1e.04 -0.021 (0.011)
ADHD Spleen 0.001 0.002 (0.011)
ADHD Spleen 0.01 0.013 (0.011)
ADHD Spleen 0.05 0.009 (0.011)
ADHD Spleen 0.1 0.012 (0.011)
ADHD Spleen 0.5 0.024 (0.011)
ADHD Spleen 1 0.027 (0.011)
ADHD Spleen All 0.011 (0.011)
ADHD Stomach 1e.06 0.013 (0.011)
ADHD Stomach 1e.05 0.014 (0.011)
ADHD Stomach 1e.04 -0.002 (0.011)
ADHD Stomach 0.001 -0.001 (0.011)
ADHD Stomach 0.01 0.019 (0.011)
ADHD Stomach 0.05 0.03 (0.011)
ADHD Stomach 0.1 0.028 (0.011)
ADHD Stomach 0.5 0.052 (0.011)
ADHD Stomach 1 0.048 (0.011)
ADHD Stomach All 0.056 (0.011)
ADHD Testis 1e.06 -0.006 (0.011)
ADHD Testis 1e.05 -0.01 (0.011)
ADHD Testis 1e.04 -0.002 (0.011)
ADHD Testis 0.001 -0.007 (0.011)
ADHD Testis 0.01 0.027 (0.011)
ADHD Testis 0.05 0.031 (0.011)
ADHD Testis 0.1 0.038 (0.011)
ADHD Testis 0.5 0.043 (0.011)
ADHD Testis 1 0.041 (0.011)
ADHD Testis All 0.039 (0.011)
ADHD Thyroid 1e.06 -0.008 (0.011)
ADHD Thyroid 1e.05 0.005 (0.011)
ADHD Thyroid 1e.04 0.005 (0.011)
ADHD Thyroid 0.001 0.018 (0.011)
ADHD Thyroid 0.01 0.024 (0.011)
ADHD Thyroid 0.05 0.018 (0.011)
ADHD Thyroid 0.1 0.029 (0.011)
ADHD Thyroid 0.5 0.043 (0.011)
ADHD Thyroid 1 0.044 (0.011)
ADHD Thyroid All 0.039 (0.011)
ADHD Uterus 1e.04 -0.002 (0.011)
ADHD Uterus 0.001 0.007 (0.011)
ADHD Uterus 0.01 0.008 (0.011)
ADHD Uterus 0.05 0.01 (0.011)
ADHD Uterus 0.1 0.018 (0.011)
ADHD Uterus 0.5 0.037 (0.011)
ADHD Uterus 1 0.04 (0.011)
ADHD Uterus All 0.044 (0.011)
ADHD Vagina 1e.05 -0.025 (0.011)
ADHD Vagina 1e.04 -0.008 (0.011)
ADHD Vagina 0.001 0.014 (0.011)
ADHD Vagina 0.01 0.022 (0.011)
ADHD Vagina 0.05 0.02 (0.011)
ADHD Vagina 0.1 0.031 (0.011)
ADHD Vagina 0.5 0.039 (0.011)
ADHD Vagina 1 0.039 (0.011)
ADHD Vagina All 0.036 (0.011)
ADHD Whole_Blood 1e.06 0.019 (0.011)
ADHD Whole_Blood 1e.05 0.007 (0.011)
ADHD Whole_Blood 1e.04 0.004 (0.011)
ADHD Whole_Blood 0.001 0.023 (0.011)
ADHD Whole_Blood 0.01 0.022 (0.011)
ADHD Whole_Blood 0.05 0.03 (0.011)
ADHD Whole_Blood 0.1 0.045 (0.011)
ADHD Whole_Blood 0.5 0.052 (0.011)
ADHD Whole_Blood 1 0.053 (0.011)
ADHD Whole_Blood All 0.046 (0.011)
ADHD YFS.BLOOD.RNAARR 1e.05 -0.018 (0.011)
ADHD YFS.BLOOD.RNAARR 1e.04 0.008 (0.011)
ADHD YFS.BLOOD.RNAARR 0.001 0.01 (0.011)
ADHD YFS.BLOOD.RNAARR 0.01 0.013 (0.011)
ADHD YFS.BLOOD.RNAARR 0.05 0.019 (0.011)
ADHD YFS.BLOOD.RNAARR 0.1 0.024 (0.011)
ADHD YFS.BLOOD.RNAARR 0.5 0.044 (0.011)
ADHD YFS.BLOOD.RNAARR 1 0.042 (0.011)
ADHD YFS.BLOOD.RNAARR All 0.043 (0.011)
Correlation between GeRS model predictions and observed values in TEDS
Phenotype Weight Model R (SE) P
Height21 Adipose_Subcutaneous 0.5 0.211 (0.013) 0.00e+00
Height21 Adipose_Visceral_Omentum 0.1 0.196 (0.013) 0.00e+00
Height21 Adrenal_Gland All 0.161 (0.013) 0.00e+00
Height21 Artery_Aorta All 0.193 (0.013) 0.00e+00
Height21 Artery_Coronary 1 0.149 (0.013) 0.00e+00
Height21 Artery_Tibial 0.5 0.207 (0.013) 0.00e+00
Height21 Brain_Amygdala 1 0.127 (0.013) 0.00e+00
Height21 Brain_Anterior_cingulate_cortex_BA24 1 0.108 (0.013) 0.00e+00
Height21 Brain_Caudate_basal_ganglia 1 0.123 (0.013) 0.00e+00
Height21 Brain_Cerebellar_Hemisphere 0.01 0.151 (0.013) 0.00e+00
Height21 Brain_Cerebellum 0.5 0.164 (0.013) 0.00e+00
Height21 Brain_Cortex 1 0.14 (0.013) 0.00e+00
Height21 Brain_Frontal_Cortex_BA9 0.5 0.131 (0.013) 0.00e+00
Height21 Brain_Hippocampus 0.5 0.106 (0.013) 0.00e+00
Height21 Brain_Hypothalamus 0.1 0.11 (0.013) 0.00e+00
Height21 Brain_Nucleus_accumbens_basal_ganglia 0.1 0.123 (0.013) 0.00e+00
Height21 Brain_Putamen_basal_ganglia 0.1 0.118 (0.013) 0.00e+00
Height21 Brain_Spinal_cord_cervical_c-1 1 0.106 (0.013) 0.00e+00
Height21 Brain_Substantia_nigra 0.1 0.104 (0.013) 0.00e+00
Height21 Breast_Mammary_Tissue All 0.182 (0.013) 0.00e+00
Height21 Cells_EBV-transformed_lymphocytes 0.5 0.148 (0.013) 0.00e+00
Height21 Cells_Transformed_fibroblasts 1 0.19 (0.013) 0.00e+00
Height21 CMC.BRAIN.RNASEQ All 0.184 (0.013) 0.00e+00
Height21 CMC.BRAIN.RNASEQ_SPLICING 1 0.147 (0.013) 0.00e+00
Height21 Colon_Sigmoid 1 0.16 (0.013) 0.00e+00
Height21 Colon_Transverse 1 0.171 (0.013) 0.00e+00
Height21 Esophagus_Gastroesophageal_Junction 1 0.178 (0.013) 0.00e+00
Height21 Esophagus_Mucosa 1 0.194 (0.013) 0.00e+00
Height21 Esophagus_Muscularis 0.5 0.196 (0.013) 0.00e+00
Height21 Heart_Atrial_Appendage 1 0.163 (0.013) 0.00e+00
Height21 Heart_Left_Ventricle 0.5 0.159 (0.013) 0.00e+00
Height21 Liver 0.5 0.147 (0.013) 0.00e+00
Height21 Lung 0.05 0.187 (0.013) 0.00e+00
Height21 METSIM.ADIPOSE.RNASEQ 0.1 0.181 (0.013) 0.00e+00
Height21 Minor_Salivary_Gland 0.1 0.107 (0.013) 0.00e+00
Height21 Muscle_Skeletal 1 0.185 (0.013) 0.00e+00
Height21 Nerve_Tibial All 0.22 (0.013) 0.00e+00
Height21 NTR.BLOOD.RNAARR All 0.155 (0.013) 0.00e+00
Height21 Ovary 0.05 0.121 (0.013) 0.00e+00
Height21 Pancreas 0.05 0.17 (0.013) 0.00e+00
Height21 Pituitary All 0.166 (0.013) 0.00e+00
Height21 Prostate 1 0.122 (0.013) 0.00e+00
Height21 Skin_Not_Sun_Exposed_Suprapubic 0.5 0.183 (0.013) 0.00e+00
Height21 Skin_Sun_Exposed_Lower_leg 0.5 0.209 (0.013) 0.00e+00
Height21 Small_Intestine_Terminal_Ileum 1 0.131 (0.013) 0.00e+00
Height21 Spleen All 0.171 (0.013) 0.00e+00
Height21 Stomach 0.05 0.171 (0.013) 0.00e+00
Height21 Testis All 0.193 (0.013) 0.00e+00
Height21 Thyroid 0.5 0.205 (0.013) 0.00e+00
Height21 Uterus 1 0.104 (0.013) 0.00e+00
Height21 Vagina All 0.12 (0.013) 0.00e+00
Height21 Whole_Blood All 0.174 (0.013) 0.00e+00
Height21 YFS.BLOOD.RNAARR 0.5 0.194 (0.013) 0.00e+00
BMI21 Adipose_Subcutaneous All 0.122 (0.014) 0.00e+00
BMI21 Adipose_Visceral_Omentum 1 0.104 (0.014) 0.00e+00
BMI21 Adrenal_Gland 1 0.089 (0.014) 0.00e+00
BMI21 Artery_Aorta 0.5 0.09 (0.014) 0.00e+00
BMI21 Artery_Coronary 0.1 0.071 (0.014) 0.00e+00
BMI21 Artery_Tibial All 0.123 (0.014) 0.00e+00
BMI21 Brain_Amygdala 0.1 0.083 (0.014) 0.00e+00
BMI21 Brain_Anterior_cingulate_cortex_BA24 All 0.097 (0.014) 0.00e+00
BMI21 Brain_Caudate_basal_ganglia All 0.077 (0.014) 0.00e+00
BMI21 Brain_Cerebellar_Hemisphere All 0.092 (0.014) 0.00e+00
BMI21 Brain_Cerebellum All 0.116 (0.014) 0.00e+00
BMI21 Brain_Cortex All 0.092 (0.014) 0.00e+00
BMI21 Brain_Frontal_Cortex_BA9 0.5 0.077 (0.014) 0.00e+00
BMI21 Brain_Hippocampus 0.5 0.071 (0.014) 0.00e+00
BMI21 Brain_Hypothalamus 1 0.051 (0.014) 0.00e+00
BMI21 Brain_Nucleus_accumbens_basal_ganglia 0.5 0.051 (0.014) 0.00e+00
BMI21 Brain_Putamen_basal_ganglia All 0.077 (0.014) 0.00e+00
BMI21 Brain_Spinal_cord_cervical_c-1 0.05 0.052 (0.014) 0.00e+00
BMI21 Brain_Substantia_nigra 0.5 0.04 (0.014) 4.00e-03
BMI21 Breast_Mammary_Tissue 1 0.078 (0.014) 0.00e+00
BMI21 Cells_EBV-transformed_lymphocytes 0.05 0.093 (0.014) 0.00e+00
BMI21 Cells_Transformed_fibroblasts 1 0.099 (0.014) 0.00e+00
BMI21 CMC.BRAIN.RNASEQ 0.5 0.111 (0.014) 0.00e+00
BMI21 CMC.BRAIN.RNASEQ_SPLICING 0.05 0.096 (0.014) 0.00e+00
BMI21 Colon_Sigmoid All 0.067 (0.014) 0.00e+00
BMI21 Colon_Transverse 0.5 0.076 (0.014) 0.00e+00
BMI21 Esophagus_Gastroesophageal_Junction All 0.078 (0.014) 0.00e+00
BMI21 Esophagus_Mucosa All 0.097 (0.014) 0.00e+00
BMI21 Esophagus_Muscularis All 0.107 (0.014) 0.00e+00
BMI21 Heart_Atrial_Appendage All 0.107 (0.014) 0.00e+00
BMI21 Heart_Left_Ventricle 0.1 0.084 (0.014) 0.00e+00
BMI21 Liver All 0.08 (0.014) 0.00e+00
BMI21 Lung All 0.104 (0.014) 0.00e+00
BMI21 METSIM.ADIPOSE.RNASEQ 0.5 0.099 (0.014) 0.00e+00
BMI21 Minor_Salivary_Gland 0.001 0.022 (0.014) 1.05e-01
BMI21 Muscle_Skeletal 0.5 0.106 (0.014) 0.00e+00
BMI21 Nerve_Tibial All 0.117 (0.014) 0.00e+00
BMI21 NTR.BLOOD.RNAARR 0.1 0.08 (0.014) 0.00e+00
BMI21 Ovary All 0.058 (0.014) 0.00e+00
BMI21 Pancreas 1 0.093 (0.014) 0.00e+00
BMI21 Pituitary All 0.077 (0.014) 0.00e+00
BMI21 Prostate All 0.061 (0.014) 0.00e+00
BMI21 Skin_Not_Sun_Exposed_Suprapubic 0.1 0.096 (0.014) 0.00e+00
BMI21 Skin_Sun_Exposed_Lower_leg 1 0.098 (0.014) 0.00e+00
BMI21 Small_Intestine_Terminal_Ileum 0.1 0.075 (0.014) 0.00e+00
BMI21 Spleen All 0.09 (0.014) 0.00e+00
BMI21 Stomach 0.1 0.093 (0.014) 0.00e+00
BMI21 Testis All 0.119 (0.014) 0.00e+00
BMI21 Thyroid 1 0.096 (0.014) 0.00e+00
BMI21 Uterus 1 0.043 (0.014) 2.00e-03
BMI21 Vagina 1 0.066 (0.014) 0.00e+00
BMI21 Whole_Blood All 0.097 (0.014) 0.00e+00
BMI21 YFS.BLOOD.RNAARR 0.5 0.086 (0.014) 0.00e+00
GCSE Adipose_Subcutaneous All 0.16 (0.012) 0.00e+00
GCSE Adipose_Visceral_Omentum 0.5 0.158 (0.012) 0.00e+00
GCSE Adrenal_Gland 0.1 0.125 (0.012) 0.00e+00
GCSE Artery_Aorta All 0.135 (0.012) 0.00e+00
GCSE Artery_Coronary All 0.122 (0.012) 0.00e+00
GCSE Artery_Tibial All 0.165 (0.012) 0.00e+00
GCSE Brain_Amygdala 0.05 0.097 (0.012) 0.00e+00
GCSE Brain_Anterior_cingulate_cortex_BA24 All 0.129 (0.012) 0.00e+00
GCSE Brain_Caudate_basal_ganglia 0.1 0.126 (0.012) 0.00e+00
GCSE Brain_Cerebellar_Hemisphere 0.5 0.142 (0.012) 0.00e+00
GCSE Brain_Cerebellum 1 0.144 (0.012) 0.00e+00
GCSE Brain_Cortex 1 0.133 (0.012) 0.00e+00
GCSE Brain_Frontal_Cortex_BA9 1 0.115 (0.012) 0.00e+00
GCSE Brain_Hippocampus 1 0.124 (0.012) 0.00e+00
GCSE Brain_Hypothalamus 1 0.108 (0.012) 0.00e+00
GCSE Brain_Nucleus_accumbens_basal_ganglia 0.5 0.116 (0.012) 0.00e+00
GCSE Brain_Putamen_basal_ganglia 1 0.126 (0.012) 0.00e+00
GCSE Brain_Spinal_cord_cervical_c-1 All 0.109 (0.012) 0.00e+00
GCSE Brain_Substantia_nigra 0.05 0.104 (0.012) 0.00e+00
GCSE Breast_Mammary_Tissue 0.5 0.14 (0.012) 0.00e+00
GCSE Cells_EBV-transformed_lymphocytes 0.05 0.119 (0.012) 0.00e+00
GCSE Cells_Transformed_fibroblasts All 0.16 (0.012) 0.00e+00
GCSE CMC.BRAIN.RNASEQ All 0.181 (0.012) 0.00e+00
GCSE CMC.BRAIN.RNASEQ_SPLICING 0.5 0.134 (0.012) 0.00e+00
GCSE Colon_Sigmoid 0.5 0.129 (0.012) 0.00e+00
GCSE Colon_Transverse 1 0.132 (0.012) 0.00e+00
GCSE Esophagus_Gastroesophageal_Junction All 0.133 (0.012) 0.00e+00
GCSE Esophagus_Mucosa All 0.152 (0.012) 0.00e+00
GCSE Esophagus_Muscularis All 0.156 (0.012) 0.00e+00
GCSE Heart_Atrial_Appendage 0.5 0.142 (0.012) 0.00e+00
GCSE Heart_Left_Ventricle All 0.148 (0.012) 0.00e+00
GCSE Liver All 0.107 (0.012) 0.00e+00
GCSE Lung All 0.163 (0.012) 0.00e+00
GCSE METSIM.ADIPOSE.RNASEQ 1 0.16 (0.012) 0.00e+00
GCSE Minor_Salivary_Gland 0.5 0.111 (0.012) 0.00e+00
GCSE Muscle_Skeletal All 0.162 (0.012) 0.00e+00
GCSE Nerve_Tibial All 0.16 (0.012) 0.00e+00
GCSE NTR.BLOOD.RNAARR 1 0.114 (0.012) 0.00e+00
GCSE Ovary 0.1 0.113 (0.012) 0.00e+00
GCSE Pancreas All 0.135 (0.012) 0.00e+00
GCSE Pituitary 1 0.126 (0.012) 0.00e+00
GCSE Prostate All 0.119 (0.012) 0.00e+00
GCSE Skin_Not_Sun_Exposed_Suprapubic All 0.153 (0.012) 0.00e+00
GCSE Skin_Sun_Exposed_Lower_leg All 0.17 (0.012) 0.00e+00
GCSE Small_Intestine_Terminal_Ileum 0.5 0.121 (0.012) 0.00e+00
GCSE Spleen 0.5 0.139 (0.012) 0.00e+00
GCSE Stomach All 0.111 (0.012) 0.00e+00
GCSE Testis 0.5 0.163 (0.012) 0.00e+00
GCSE Thyroid All 0.16 (0.012) 0.00e+00
GCSE Uterus 0.05 0.096 (0.012) 0.00e+00
GCSE Vagina 0.05 0.094 (0.012) 0.00e+00
GCSE Whole_Blood 0.5 0.159 (0.012) 0.00e+00
GCSE YFS.BLOOD.RNAARR All 0.151 (0.012) 0.00e+00
ADHD Adipose_Subcutaneous 1 0.056 (0.011) 0.00e+00
ADHD Adipose_Visceral_Omentum 0.5 0.051 (0.011) 0.00e+00
ADHD Adrenal_Gland 1 0.052 (0.011) 0.00e+00
ADHD Artery_Aorta 0.5 0.058 (0.011) 0.00e+00
ADHD Artery_Coronary 0.1 0.029 (0.011) 1.00e-02
ADHD Artery_Tibial 1 0.055 (0.011) 0.00e+00
ADHD Brain_Amygdala 1 0.018 (0.011) 1.19e-01
ADHD Brain_Anterior_cingulate_cortex_BA24 1 0.039 (0.011) 1.00e-03
ADHD Brain_Caudate_basal_ganglia All 0.046 (0.011) 0.00e+00
ADHD Brain_Cerebellar_Hemisphere 1 0.029 (0.011) 9.00e-03
ADHD Brain_Cerebellum All 0.033 (0.011) 3.00e-03
ADHD Brain_Cortex 1 0.036 (0.011) 1.00e-03
ADHD Brain_Frontal_Cortex_BA9 1 0.036 (0.011) 1.00e-03
ADHD Brain_Hippocampus 0.5 0.034 (0.011) 3.00e-03
ADHD Brain_Hypothalamus 1 0.026 (0.011) 2.20e-02
ADHD Brain_Nucleus_accumbens_basal_ganglia 1 0.017 (0.011) 1.39e-01
ADHD Brain_Putamen_basal_ganglia All 0.046 (0.011) 0.00e+00
ADHD Brain_Spinal_cord_cervical_c-1 0.001 0.017 (0.011) 1.32e-01
ADHD Brain_Substantia_nigra 0.001 0.013 (0.011) 2.44e-01
ADHD Breast_Mammary_Tissue All 0.046 (0.011) 0.00e+00
ADHD Cells_EBV-transformed_lymphocytes All 0.045 (0.011) 0.00e+00
ADHD Cells_Transformed_fibroblasts 1 0.054 (0.011) 0.00e+00
ADHD CMC.BRAIN.RNASEQ 1 0.051 (0.011) 0.00e+00
ADHD CMC.BRAIN.RNASEQ_SPLICING All 0.054 (0.011) 0.00e+00
ADHD Colon_Sigmoid All 0.055 (0.011) 0.00e+00
ADHD Colon_Transverse 1 0.057 (0.011) 0.00e+00
ADHD Esophagus_Gastroesophageal_Junction 1 0.039 (0.011) 1.00e-03
ADHD Esophagus_Mucosa 0.5 0.06 (0.011) 0.00e+00
ADHD Esophagus_Muscularis 1 0.054 (0.011) 0.00e+00
ADHD Heart_Atrial_Appendage All 0.051 (0.011) 0.00e+00
ADHD Heart_Left_Ventricle 0.5 0.043 (0.011) 0.00e+00
ADHD Liver All 0.039 (0.011) 1.00e-03
ADHD Lung 0.5 0.062 (0.011) 0.00e+00
ADHD METSIM.ADIPOSE.RNASEQ 1 0.058 (0.011) 0.00e+00
ADHD Minor_Salivary_Gland 1 0.015 (0.011) 1.91e-01
ADHD Muscle_Skeletal All 0.063 (0.011) 0.00e+00
ADHD Nerve_Tibial 1 0.036 (0.011) 1.00e-03
ADHD NTR.BLOOD.RNAARR 1 0.034 (0.011) 2.00e-03
ADHD Ovary 1 0.037 (0.011) 1.00e-03
ADHD Pancreas 1 0.037 (0.011) 1.00e-03
ADHD Pituitary 1 0.042 (0.011) 0.00e+00
ADHD Prostate 1 0.024 (0.011) 3.20e-02
ADHD Skin_Not_Sun_Exposed_Suprapubic 1 0.055 (0.011) 0.00e+00
ADHD Skin_Sun_Exposed_Lower_leg 0.5 0.056 (0.011) 0.00e+00
ADHD Small_Intestine_Terminal_Ileum All 0.043 (0.011) 0.00e+00
ADHD Spleen 1 0.027 (0.011) 1.70e-02
ADHD Stomach All 0.056 (0.011) 0.00e+00
ADHD Testis 0.5 0.043 (0.011) 0.00e+00
ADHD Thyroid 1 0.044 (0.011) 0.00e+00
ADHD Uterus All 0.044 (0.011) 0.00e+00
ADHD Vagina 1 0.039 (0.011) 0.00e+00
ADHD Whole_Blood 1 0.053 (0.011) 0.00e+00
ADHD YFS.BLOOD.RNAARR 0.5 0.044 (0.011) 0.00e+00

Show cis-regulated expression-based heritability

Proportion of heritability explained

Proportion of heritability explained

Show summary of GeRS tests

Predictive utility

Predictive utility

Correlation between GeRS model predictions and observed values in UK Biobank
FALSE Phenotype Test Model 1 Model 2 Model 1 R Model 2 R R diff R perc diff R diff pval
1 Height21 GeRS_multi_pT All 0.5 0.237 0.241 -0.004 -1.8% 3.23e-01
6 BMI21 GeRS_multi_pT All 0.1 0.142 0.136 0.005 3.8% 3.75e-01
11 GCSE GeRS_multi_pT All 0.5 0.197 0.209 -0.012 -6.1% 1.91e-03
16 ADHD GeRS_multi_pT All 0.5 0.055 0.057 -0.002 -4.5% 7.46e-01
2 Height21 GeRS_multi_tissue All Nerve.Tibial 0.237 0.220 0.017 7.1% 2.45e-02
7 BMI21 GeRS_multi_tissue All Artery.Tibial 0.142 0.123 0.019 13.1% 3.91e-02
12 GCSE GeRS_multi_tissue All CMC.BRAIN.RNASEQ 0.197 0.188 0.009 4.4% 1.46e-01
17 ADHD GeRS_multi_tissue All Muscle.Skeletal 0.055 0.063 -0.009 -15.6% 4.10e-01
3 Height21 PRS_and_GeRS All PRS 0.396 0.397 -0.002 -0.4% 5.37e-01
8 BMI21 PRS_and_GeRS All PRS 0.315 0.317 -0.002 -0.5% 4.65e-01
13 GCSE PRS_and_GeRS All PRS 0.370 0.369 0.001 0.2% 6.75e-01
18 ADHD PRS_and_GeRS All PRS 0.112 0.113 -0.001 -0.9% 8.09e-01
5 Height21 PRScs_and_GeRS All PRS 0.428 0.433 -0.005 -1.1% 1.13e-02
10 BMI21 PRScs_and_GeRS All PRS 0.347 0.349 -0.002 -0.7% 1.80e-01
15 GCSE PRScs_and_GeRS All PRS 0.395 0.399 -0.004 -0.9% 3.46e-03
20 ADHD PRScs_and_GeRS All PRS 0.127 0.132 -0.005 -4.1% 6.51e-02
4 Height21 Strat_PRS All strat.PRS 0.380 0.381 -0.001 -0.4% 6.06e-01
9 BMI21 Strat_PRS All strat.PRS 0.272 0.271 0.001 0.5% 2.89e-01
14 GCSE Strat_PRS All strat.PRS 0.331 0.333 -0.003 -0.8% 1.70e-01
19 ADHD Strat_PRS All strat.PRS 0.094 0.104 -0.010 -10.7% 4.32e-02

Show summary of GeRS PP4 tests

Predictive utility

Predictive utility

Correlation between GeRS PP4 model predictions and observed values in UK Biobank
FALSE Phenotype Test Model 1 Model 2 Model 1 R Model 2 R R diff R diff pval
1 Height21 GeRS_multi_tissue All Thyroid 0.202 0.168 0.034 1.78e-03
3 BMI21 GeRS_multi_tissue All CMC.BRAIN.RNASEQ 0.086 0.090 -0.004 6.05e-01
5 GCSE GeRS_multi_tissue All Esophagus.Muscularis 0.156 0.125 0.031 1.18e-03
7 ADHD GeRS_multi_tissue All Heart.Left.Ventricle -0.015 0.011 -0.026 4.56e-02
2 Height21 PRS_and_GeRS All PRS 0.398 0.397 0.001 8.19e-01
4 BMI21 PRS_and_GeRS All PRS 0.317 0.317 0.000 5.86e-01
6 GCSE PRS_and_GeRS All PRS 0.368 0.369 -0.002 3.02e-01
8 ADHD PRS_and_GeRS All PRS 0.111 0.113 -0.003 3.26e-01

Show summary of GeRS TissueSpecific tests

Predictive utility

Predictive utility

Correlation between GeRS TissueSpecific model predictions and observed values in UK Biobank
FALSE Phenotype Test Model 1 Model 2 Model 1 R Model 2 R R diff R diff pval
1 Height21 GeRS_multi_tissue All Adipose.Subcutaneous 0.241 0.185 0.056 7.99e-09
3 BMI21 GeRS_multi_tissue All CMC.BRAIN.RNASEQ 0.123 0.114 0.009 3.50e-01
5 GCSE GeRS_multi_tissue All CMC.BRAIN.RNASEQ 0.196 0.147 0.049 2.32e-08
7 ADHD GeRS_multi_tissue All Brain.Cerebellar.Hemisphere 0.055 0.062 -0.006 6.36e-01
2 Height21 PRS_and_GeRS All PRS 0.397 0.397 0.000 9.74e-01
4 BMI21 PRS_and_GeRS All PRS 0.319 0.317 0.002 1.24e-01
6 GCSE PRS_and_GeRS All PRS 0.367 0.369 -0.002 2.67e-01
8 ADHD PRS_and_GeRS All PRS 0.111 0.113 -0.003 5.65e-01

Show GeRS, PRS, stratified-PRS comparison

Predictive utility

Predictive utility

Proportion of PRS explained by GeRS
Phenotype Prop_GE Prop_GE_coloc
Height 0.597 0.462
BMI 0.446 0.253
GCSE 0.533 0.360
ADHD 0.484 -0.028

Show GeRS coloc and tissue specific comparison

Predictive utility

Predictive utility

Comparison of GeRS
Phenotype Method R SE
Height GeRS (best) 0.220 0.013
Height GeRS (all) 0.237 0.013
Height GeRS coloc (best) 0.154 0.013
Height GeRS coloc (all) 0.183 0.013
Height GeRS TS (best) 0.185 0.013
Height GeRS TS (all) 0.241 0.013
BMI GeRS (best) 0.123 0.014
BMI GeRS (all) 0.142 0.014
BMI GeRS coloc (best) 0.088 0.014
BMI GeRS coloc (all) 0.080 0.014
BMI GeRS TS (best) 0.114 0.014
BMI GeRS TS (all) 0.123 0.014
GCSE GeRS (best) 0.188 0.012
GCSE GeRS (all) 0.197 0.011
GCSE GeRS coloc (best) 0.104 0.012
GCSE GeRS coloc (all) 0.133 0.012
GCSE GeRS TS (best) 0.147 0.012
GCSE GeRS TS (all) 0.196 0.011
ADHD GeRS (best) 0.063 0.011
ADHD GeRS (all) 0.055 0.011
ADHD GeRS coloc (best) 0.025 0.011
ADHD GeRS coloc (all) -0.003 0.011
ADHD GeRS TS (best) 0.062 0.011
ADHD GeRS TS (all) 0.055 0.011

Show association with GeRS for each SNP-weight set

Predictive utility

Predictive utility

Show association with GeRS PP4 for each SNP-weight set

Predictive utility

Predictive utility

Show association with GeRS TissueSpecific for each SNP-weight set

Predictive utility

Predictive utility

Show association with GeRS for each SNP-weight set after accounting for number of features

Predictive utility

Predictive utility

Show effect of number of features in the SNP-weight set

Number of feature effect

Number of feature effect



5 Conclusion

  • Gene expression risk scores (GeRS) can explain a significantly non-zero amount of variance in a range of phenotypes
  • The amount of variance explained by GeRS is less than explained by a genome-wide pT+clump polygenic score or TWAS SNP-weight stratified polygenic scores, except for Rheumatoid Arthritis.
  • Use of elastic net models to combine GeRSs derived using multiple pTs does not significantly improve prediction over the single best pT as idenitified using 10-fold cross validation, though prediction never decreases
  • Inclusion of GeRS based on SNP-weights derived using multiple tissues consistently improves prediction over the single best tissues as idenitified using 10-fold cross validation
  • Inclusion of GeRSs only improved prediction over genome-wide polygenic scores for rheumatoid arthritis, providing an 1.6 times increase in r2 (0.021 to 0.035). Prediction improvements were non significant for all other phenotypes in UK Biobank and TEDS.
  • However, PRScs polygenic scores which does not use LD clumping reduces the benefit of using GeRS for all outcomes, and the increase for RheumArth is no longer significant. This indicates the gain is in the fact that GeRS are based on joint SNP models.
  • This findings suggest that GeRS represent a component of risk captured within genome-wide polygenic scores, rather than containing novel information.
  • This indicates GeRS may be more useful for stratifying risk rather than improving risk prediction in a linear model.
  • TWAS SNP PRS explain a suprisingly large amount of variance considering they only contain a fraction of the genome.